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Abstract

This paper studies performative risk minimization, a formulation of stochastic optimiza-
tion under decision-dependent distributions. We consider the general case where the per-
formative risk can be non-convex, for which we develop efficient parameter-free optimistic
optimization-based methods. Our algorithms significantly improve upon the existing Lips-
chitz bandit-based method in many aspects. In particular, our framework does not require
knowledge about the sensitivity parameter of the distribution map and the Lipshitz con-
stant of the loss function. This makes our framework practically favorable, together with
the efficient optimistic optimization-based tree-search mechanism. We provide experimen-
tal results that demonstrate the numerical superiority of our algorithms over the existing
method and other black-box optimistic optimization methods.

Keywords: Decision-Dependent Distributions, Performative Risk Minimization, Opti-
mistic Optimization, Black-Box Optimization, Stochastic Non-Convex Optimization

1 Introduction

In the realm of stochastic optimization, where navigating uncertainty is paramount, dis-
tributional shifts stand out as a significant challenge. Among the various sources of these
shifts, one particularly intriguing phenomenon stems from feedback mechanisms intricately
linked to decision-making processes. This feedback loop alters the distribution that governs
the stochastic environment of the system, creating a dynamic landscape where decisions
shape and are shaped by distributions. For example, the decisions made by a dynamic
resource allocation algorithm for a renewable energy grid not only influence the immedi-
ate allocation of resources but also affect the underlying distribution of factors like energy
demand and supply. Classifiers, such as insurance underwriting systems, often promote a
shift in behavior within the population to improve their labels. Predictions of stock prices
wield significant influence over trading decisions. Moreover, election predictions have the
potential to shape and influence voter behavior, which in turn can impact voting results.
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Decision-making processes under such phenomena can be formulated as stochastic opti-
mization under decision-dependent distributions. Perdomo et al. (2020) proposed the notion
of the distribution map to consider decision-dependent distributions for stochastic optimiza-
tion models. That is, the distribution D(θ) of the parameter z capturing the stochastic
environment depends on the decision θ. Here, θ may encode the resource allocation deci-
sion for a renewable energy grid and the election prediction, in which case z corresponds
to the energy demand and the voting results, respectively. For machine learning, we can
associate θ with predictive models and z with data. Then the objective is to minimize the
performative risk under a loss function f , defined as

PR(θ) := Ez∼D(θ) [f(θ, z)] .

The expression performative comes from the term performative prediction (Perdomo et al.,
2020), which implies the phenomenon where predictions influence the outcomes. The goal
of this paper is to design an efficient algorithmic framework for minimizing the performative
risk which models stochastic optimization under decision-dependent distributions.

1.1 Existing Methods for Performative Risk Minimization

Unlike the standard stochastic optimization problem, the decision θ may affect the under-
lying distribution D(θ). Hence, a natural starting point to minimize the performative risk
is to consider the following iterative algorithm, referred to as repeated risk minimization
(RRM). Given an initial solution θ0 ∈ Θ where Θ is the domain, we apply

θt+1 ∈ argmin
θ∈Θ

Ez∼D(θt) [f(θ, z)] (RRM)

for t ≥ 0. Here, computing the next iterate θt+1 requires solving a stochastic optimization
instance where the underlying distribution is fixed with D(θt). Another approach is a
gradient-based method such as

θt+1 = θt − ηtEz∼D(θt) [∇f(θt, z)] (RGD)

where ηt is a step size, and we refer to this procedure as repeated gradient descent (RGD).
Note that running RGD, as well as RRM, is based on access to the distribution D(θt) for
every iteration t ≥ 0, which may not be feasible in practice. A more sample-efficient method
is to apply the standard stochastic gradient descent (SGD) update, given by

θt+1 = θt − ηt∇f(θt, zt) where zt ∼ D(θt). (SGD)

Drusvyatskiy and Xiao (2023) analyzed variants of SGD such as stochastic proximal gradi-
ent, proximal point, clipped gradient, and accelerated gradient methods.

Convergence of these iterative methods has been established; (Perdomo et al., 2020) for
RRM, (Perdomo et al., 2020; Mendler-Dünner et al., 2020) for RGD, and (Mendler-Dünner
et al., 2020) for SGD. They showed convergence to a performatively stable solution, under
some strong convexity and smoothness assumptions on the loss function f . Here, we say
that a solution θPS is performatively stable if it satisfies

θPS ∈ argmin
θ∈Θ

Ez∼D(θPS) [f(θ, z)]
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In particular, θPS is a fixed point of RRM. However, let alone the validity of the structural
assumptions on the loss functions, the performatively stable solution θPS is in general not
a minimizer of the performative risk (Perdomo et al., 2020; Miller et al., 2021). Let θPO
denote a minimizer of the performative risk, i.e.,

θPO ∈ argmin
θ∈Θ

Ez∼D(θ) [f(θ, z)] .

It turns out that PR(θPS) can be arbitrarily large compared to PR(θPO) (Miller et al.,
2021).

Derivative-free zeroth-order optimization methods have been proposed to minimize the
performative risk directly (Izzo et al., 2021; Miller et al., 2021; Izzo et al., 2022; Ray et al.,
2022). For the derivative-free methods to minimize the performative risk PR(θ), the require-
ment, however, is that PR(θ) is a convex function of the decision θ. Miller et al. (2021)
provided some sufficient conditions on the distribution map to guarantee the convexity of
the performative risk. They argued that if the distribution map satisfies a certain stochas-
tic dominance condition, which is related to stochastic orders (Shaked and Shanthikumar,
2007), then convexity of the loss function f leads to a convex performative risk. Neverthe-
less, as noted by Perdomo et al. (2020), the performative risk is non-convex in general even
if the loss function is convex.

To tackle the general case of non-convex performative risk, Jagadeesan et al. (2022) de-
veloped a bandit optimization-based algorithm. The problem of minimizing the performa-
tive risk is indeed a bandit optimization problem because until the decision θ is deployed it is
difficult to estimate the distribution D(θ) and thus the performative risk PR(θ). That said,
the framework of Jagadeesan et al. (2022) is inspired by the zooming algorithm (Zooming)
for Lipschitz bandits due to Kleinberg et al. (2008). The core idea is to adaptively discretize
the solution space Θ thereby narrowing down the location of the optimal decision θPO. In
fact, if the loss function f is Lθ-Lipschitz continuous in θ and Lz-Lipschitz continuous in z,
the ε-sensitivity of the distribution map (defined formally in Section 3) implies that PR(θ)
is (Lθ + Lzε)-Lipschitz continuous (Jagadeesan et al., 2022). Here, the ε-sensitivity mea-
sures how much the distributions D(θ) and D(θ′) can differ for two distinct decisions θ and
θ′. Then applying Zooming directly on PR(θ) would guarantee a sublinear regret.

Although this lays down a good starting point, direct application of Zooming fails to
utilize the fact that the feedback obtained after deploying decision θ is D(θ), based on which
the learner can evaluate PR(θ) but also infer the distribution D(θ′) of other solutions θ′

using the ε-sensitivity. Jagadeesan et al. (2022) referred to this as performative feedback.
Building on this idea, they developed a variant of Zooming, and they provided a regret
upper bound that is parameterized by not Lθ + Lzε but Lzε. Here, note that Lzε vanishes
as ε→ 0 while Lθ + Lzε does not. Moreover, Lzε does not depend on Lθ, so the algorithm
works even when Lθ is not bounded. The two main components of their algorithm are
adaptive discretization and sequential elimination based on performative confidence bounds
which we explain in Section 3.

The algorithm of Jagadeesan et al. (2022) solves performative risk minimization, but
several issues hinder its practical implementation. First, to implement the adaptive dis-
cretization procedure, we need to know the Rademacher complexity C∗(f) of learning the
performative risk PR(θ) under the loss function f based on data samples from distribution
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D(θ). The Rademacher complexity parameter C∗(f) can be very high depending on the
structure of f . Second, to build a performative confidence bound, we need the Lipschitz
constant Lz and the sensitivity parameter ε. One may argue that there is a way of esti-
mating the Lipschitz constant Lz for a known class of loss functions, but the sensitivity
parameter ε determines the global landscape of the distribution map, which means that it
would be difficult to measure ε in advance. Third, one iteration of the algorithm is compu-
tationally expensive. This is because each time a decision θ is deployed, we need to compute
the performative confidence bound for every solution θ′ ∈ Θ remaining in the search space.
Such an issue is inherent in Lipschitz bandit-based methods. Although Jagadeesan et al.
(2022) did not demonstrate an implementation of their algorithm, our numerical results in
Section 6 show that the algorithm is not efficient and incurs a high regret in practice.

The aforementioned limitations of the existing method due to Jagadeesan et al. (2022)
for performative risk minimization motivate the following question.

Can we design a practical algorithm for performative risk minimization that
relies on minimal knowledge about the problem parameters?

In this paper, we devise efficient parameter-free algorithms for performative risk minimiza-
tion. We not only demonstrate strong theoretical performance guarantees but also show
experimental results to highlight their numerical effectiveness.

1.2 Our Contributions

As in (Jagadeesan et al., 2022), we study the problem of minimizing the performative risk
with performative feedback. The algorithm of Jagadeesan et al. (2022) is an adaptation
of Zooming by Kleinberg et al. (2008), and as a result, it requires knowledge of problem
parameters such as the Rademacher complexity C∗(f), the Lipschitz constant Lz, and the
sensitivity parameter ε.

Our main contribution is to design practical algorithms that do not assume knowledge
of the problem parameters. To develop such parameter-free algorithms, we build upon the
idea of optimistic optimization methods that may adapt to unknown smoothness of the
objective function. Here, parameter-free optimistic optimization methods originate from
the simultaneous optimistic optimization (SOO) algorithm (Munos, 2011) and the stochastic
extension of SOO (StoSOO) algorithm (Valko et al., 2013), and they are devised to optimize
black-box objective functions that are possibly non-convex.

Our algorithms are inspired by two more recent optimistic optimization-based parameter-
free methods due to Bartlett et al. (2019), SequOOL for the deterministic evaluation case
and StroquOOL for the noisy case. We start by considering the conceptual setting where
the distribution D(θ) associated with the deployed decision θ can be fully observed. We
call this case the full-feedback setting. Next, we study the more practically relevant setting
where we obtain a few samples from D(θ) after deploying decision θ, and we refer to this
case as the data-driven setting. We develop our algorithms for the full-feedback setting and
the data-driven setting based on SequOOL and StroquOOL, respectively.

To highlight our results early in this paper, let us provide an informal summary of our
main theorems. The following states a performance guarantee for the full-feedback case.
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Theorem 1 (Full-Feedback Case, Informal) Suppose that the distribution map satis-
fies the ε-sensitivity condition and the loss function f(θ, z) is Lz-Lipschitz continuous in z
for any θ. Let d denote the Lzε-near-optimality dimension. For the full-feedback setting,
Algorithm 1 after T decision deployments for a sufficiently large T finds a solution θ with

PR(θ)− PR(θPO) =

Lzε · 2
O
(
− T

log T

)
, if d = 0,

Õ
(
Lzε · T− 1

d

)
, if d > 0.

Here, the optimality gap bounds hide dependence on the ambient dimension D of the de-
cision domain Θ. The notion of near-optimality dimension was first introduced by Bubeck
et al. (2011a), and they argued that the near-optimality dimension and the zooming dimen-
sion due to Kleinberg et al. (2008) are closely related. In this paper, we use a more refined
definition of the near-optimality dimension due to Grill et al. (2015).

Note that the optimality gap bounds as well as the near-optimality dimension depend on
parameters Lz and ε but not on Lθ. In fact, direct application of SequOOL to minimize the
performative risk PR(θ) would result in dependence on Lθ+Lzε as the Lipschitz constant of
PR(θ) is Lθ +Lzε (Jagadeesan et al., 2022). More precisely, we would need the (Lθ +Lzε)-
near-optimality dimension, and the resulting bounds would be (Lθ + Lzε)2

O(−T/ log T ) and
Õ((Lθ+Lzε)T

−1/d). The important distinction is that our optimality gap bounds vanish as ε
becomes arbitrarily small, which setting corresponds to the standard stochastic optimization
problem with decision-agnostic distributions. Moreover, the Lzε-near-optimality dimension
is always less than or equal to the (Lθ + Lzε)-near-optimality dimension. Another aspect
to highlight in Theorem 6 is that when d = 0, we show that the optimality gap decays at
an exponentially fast rate, which was not discovered by Jagadeesan et al. (2022).

Next, we state our performance guarantee for the data-driven setting where we receive a
finite number of samples from D(θ) after deploying decision θ. The optimality gap bounds
on Algorithm 2 hide dependence on the dimension D, the number of samples received after
each decision deployment, the Rademacher complexity of learning the performative risk.

Theorem 2 (Data-Driven Case, Informal) Assume the same conditions on the distri-
bution map and the loss function. Let d denote the Lzε-near-optimality dimension. For
the data-driven setting, Algorithm 2 after T decision deployments for a sufficiently large T
finds a solution θ such that with high probability,

PR(θ)− PR(θPO) =


Lzε · 2

O
(
− T

log T

)
, low-noise regime with d = 0,

Õ
(
Lzε · T− 1

d

)
, low-noise regime with d > 0,

Õ
(
T− 1

2 + (Lzε)
d

d+2 · T− 1
d+2

)
, high-noise regime.

The low-noise and high-noise regimes are defined in Section 5. In particular, for the high-
noise regime, the bound is Õ(T−1/2 + LzεT

−1/d) which incurs the additional term T−1/2

due to errors in estimating the performative risk through noisy feedback. In particular, the
case of ε = 0 is under the high-noise regime, in which case the bound reduces to Õ(T−1/2).

Lastly, we test the numerical performance of our framework on instances in which the
associated performative risk is non-convex. The experimental results show that our al-
gorithms outperform the existing methods that include not only the sequential zooming
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algorithm of Jagadeesan et al. (2022) but also SOO (Munos, 2011), StoSOO (Valko et al.,
2013), SequOOL, and StroquOOL (Bartlett et al., 2019) applied directly to the performative
risk as a black-box function without utilizing the performative feedback.

2 Related Work

This section summarizes prior work on performative prediction and optimistic optimization.

2.1 Performative Prediction and Performative Risk Minimization

Previous work on performative prediction has mainly focused on first-order and zeroth-
order gradient-based optimization methods (Perdomo et al., 2020; Mendler-Dünner et al.,
2020; Drusvyatskiy and Xiao, 2023; Brown et al., 2022; Miller et al., 2021; Izzo et al., 2021;
Maheshwari et al., 2022; Li and Wai, 2022; Ray et al., 2022; Dong et al., 2023; Izzo et al.,
2022). Convergence of these gradient-based methods to performatively stable solutions is
studied, and Miller et al. (2021); Izzo et al. (2021) discovered some convexity conditions
under which some gradient-based methods converge to a performative optimal solution. Al-
though a performatively stable solution provides a good proxy for a performatively optimal
solution, its performance can be arbitrarily worse than the optimum. Moreover, in general,
the performative risk is non-convex and does not satisfy the convexity conditions. For the
general case, Jagadeesan et al. (2022) developed a variant of Zooming for minimizing the
performative risk. Mofakhami et al. (2023) studied RRM for training non-convex neural
networks, but they considered a different setting in terms of defining the ε-sensitivity of
the distribution map. For a comprehensive survey on performative prediction, we refer the
reader to Hardt and Mendler-Dünner (2023) and references therein.

One of the most closely related application domains is strategic classification (Dalvi
et al., 2004; Brückner et al., 2012; Hardt et al., 2016), which models a game between
an institution deploying a classifier and an agent who adapts its features to increase its
likelihood of being positively labeled. Recent work in this area includes (Dong et al., 2018;
Chen et al., 2020; Milli et al., 2019; Bechavod et al., 2021; Zrnic et al., 2021).

2.2 Optimistic Optimization

Black-box optimization and continuum-armed bandits aim to optimize an objective function
under minimal knowledge about the function. Some early work provides algorithms that
assume some weak or local smoothness conditions around a global optimal solution, such
as Zooming (Kleinberg et al., 2008), HOO (Bubeck et al., 2011a), DOO (Munos, 2011), HCT (azar
et al., 2014). Here, HOO, DOO, and HCT are optimistic optimization-based methods, which
means that these algorithms use some optimistic estimates of the black-box objective func-
tion when running a global search of the solution space. However, Zooming, HOO, DOO, and
HCT require the knowledge of the local smoothness parameter. Then Munos (2011) presented
SOO that works even when the local smoothness parameter is unknown. Valko et al. (2013)
developed StoSOO which extends SOO for the case of stochastic function evaluation, but its
convergence guarantee holds for the limited case of the near-optimality dimension being 0.
POO due to Grill et al. (2015) and GPO, PCT developed by Shang et al. (2019) work for more
general families of objective functions. Later, Bartlett et al. (2019) presented SequOOL for
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the deterministic function evaluation case and StroquOOL for the stochastic case, which
work for general families of functions and exhibit state-of-the-art numerical performance.

Recently, Li et al. (2023b) provided VHCT, which does not require the budget on the
number of decision deployments beforehand but needs the knowledge of the smoothness
parameter. There exist more algorithms that work under more specific assumptions on
smoothness. For example, DiRect (Jones et al., 1993) and methods for continuum-armed
bandits due to (Slivkins, 2011; Bubeck et al., 2011b; Malherbe and Vayatis, 2017) can take
Lipschitz-continuous objective functions.

3 Preliminaries: Optimization with Performative Feedback

In this section, we introduce the basics of performative prediction. Then we explain how
to make use of performative feedback for performative risk minimization as established
by Jagadeesan et al. (2022). In addition, we elaborate briefly on some limitations of the
performative confidence bound-based zooming algorithm by Jagadeesan et al. (2022).

As mentioned in the introduction, the ε-sensitivity measures how much the distribution
D(θ) can change with changes in decision θ. Formally, we assume that the distribution map
satisfies the following. Recall that Θ denotes the decision domain.

Assumption 1 (ε-sensitivity) A distribution map D(·) is ε-sensitive with α > 0 if for
any θ, θ′ ∈ Θ we have

W(D(θ),D(θ′)) ≤ ε∥θ − θ′∥α,

where W denotes the 1-Wasserstein distance.

The original definition due to Perdomo et al. (2020) considers the case α = 1, while
our framework allows arbitrary positive values of α. We remark that our framework is
parameter-free in that we do not require knowledge of the parameters ε and α in advance.
In theory, as we build upon optimistic optimization methods, we may take any semi-metric
ℓ, satisfying ℓ(θ, θ′) = ℓ(θ′, θ) and ℓ(θ, θ′) = 0 if and only if θ = θ′ for θ, θ′ ∈ Θ. That
being said, we may run our algorithms regardless of the sensitivity structure of the distri-
bution map, but we derive the theoretical performance guarantees based on the sensitivity
structure given in Assumption 1.

Next, we define the notion of performative feedback used to infer the distribution D(θ)
as well as the performative risk PR(θ) after deploying decision θ.

Assumption 2 (performative feedback) Deploying decision θ once, we receive feedback
about the distribution as follows.

• (Full-Feedback Setting) distribution D(θ) itself.

• (Data-Driven Setting) m0 i.i.d. samples z
(1)
θ , . . . , z

(m0)
θ from distribution D(θ).

For the data-driven setting, we may deploy the same decision θ multiple times, say n.
Then we may construct the empirical distribution D̂(θ) with nm0 i.i.d. samples from D(θ).
Using the performative feedback for θ, which provides D(θ) or D̂(θ), we may compute the
performative risk PR(θ) or its empirical estimate

P̂R(θ) = E
z∼D̂(θ)

[f(θ, z)] .
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Moreover, based on the performative feedback for θ, we may infer the performative risk of
other decisions θ′. To be specific, we use the notion of decoupled performative risk (Perdomo
et al., 2020) defined as follows.

DPR(θ, θ′) = Ez∼D(θ)

[
f(θ′, z)

]
and D̂PR(θ, θ′) = E

z∼D̂(θ)

[
f(θ′, z)

]
for any θ, θ′ ∈ Θ where DPR(θ, θ′) is the decoupled performative risk of decision θ′ under

distribution D(θ) and D̂PR(θ, θ′) is its empirical estimate. The decoupled performative risk
offers a good approximation of the performative risk, which we elaborate on below.

Assumption 3 There is some Lz > 0 such that f(θ, ·) for any fixed θ ∈ Θ is Lz-Lipschitz
continuous.

Under Assumptions 1 and 3, the Kantorovich-Rubinstein duality theorem (Kantorovich and
Rubinstein, 1958; Villani, 2008) implies the following statement (Jagadeesan et al., 2022).

Lemma 3 Under Assumptions 1 and 3, for θ, θ′ ∈ Θ,∣∣PR(θ′)−DPR(θ, θ′)
∣∣ ≤ Lzε∥θ − θ′∥α.

Therefore, as long as decisions θ and θ′ are close, the decoupled performative risk DPR(θ, θ′)
deduced based on the performative feedback D(θ) for θ would be a good proxy for the
performative risk PR(θ′) of decision θ′. By Lemma 3,

DPR(θ, θ′)− Lzε∥θ − θ′∥α ≤ PR(θ′) ≤ DPR(θ, θ′) + Lzε∥θ − θ′∥α

is a valid confidence interval for the performative risk of θ′ ∈ Θ. Note that the confidence
interval is tighter than the interval

PR(θ)− Lθ∥θ − θ′∥ − Lzε∥θ − θ′∥α ≤ PR(θ′) ≤ PR(θ) + Lθ∥θ − θ′∥+ Lzε∥θ − θ′∥α

which holds under the assumption that f(·, z) is Lθ-Lipschitz continuous for any fixed z ∈ Z
where Z denotes the domain of the stochastic parameter z (Jagadeesan et al., 2022). Here,
the latter interval can be deduced by a black-box evaluation of PR(θ) while we derived the
former using the performative feedback.

When we have a set S of multiple decisions θ with known D(θ), then for any θ′ ∈ Θ,

max
θ∈S

{
DPR(θ, θ′)− Lzε∥θ − θ′∥α

}
≤ PR(θ′) ≤ min

θ∈S

{
DPR(θ, θ′) + Lzε∥θ − θ′∥α

}
is also valid, and we refer to the bounds as performative confidence bounds. The zooming
algorithm of Jagadeesan et al. (2022) updates the performative confidence bounds whenever
a new decision is deployed, based on which suboptimal decisions are sequentially deleted.
This approach, however, has two key limitations. First, we need to know Lz and ε to derive
performative confidence bounds. Second, the computational complexity of computing the
performative confidence bounds associated with S is O(|S| · |Θ|), which is an expensive
per-time cost. Later, our experimental results reveal that the algorithm turns out to be not
numerically efficient.
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4 Optimistic Optimization-Based Parameter-Free Framework

Motivated by the challenges of the existing method, our goal is to design an efficient
parameter-free framework for performative risk minimization. For simple presentation, we
assume that the loss function and the decision domain.

Assumption 4 (bounded domain and objective) Θ ⊆ [0, 1]D where D is the ambient
dimension. Moreover, f(θ, z) ∈ [0, 1] for all θ ∈ Θ and z ∈ Z.

Let us explain the basic setup of our optimistic optimization-based framework as follows.
We assume that a hierarchical partitioning (Bubeck et al., 2011a; Munos, 2011) of the
decision domain is given. Basically, a hierarchical partitioning P of Θ is given by {Ph,i :
0 ≤ h ≤ hmax, i ∈ [Ih]} where hmax is the deepest depth, Ih is the width at depth h with
I1 = 1, {Ph,i : i ∈ [Ih]} is a partition of Θ, and Ph,i is partitioned into {Ph+1,j : j ∈ J}
for some J ⊆ [Ih+1]. Throughout the paper, we refer to Ph,i as a cell of depth h. The
hierarchical partitioning naturally corresponds to a tree structure. When a cell Ph,i is
partitioned into {Ph+1,j : j ∈ J}, Ph,i is the parent cell of its child cells Ph+1,j for j ∈ J .
Moreover, we assume that the partition at each depth level consists of cells of uniform size.

Assumption 5 (uniform partition) sup{∥θ − θ′∥ : θ, θ′ ∈ Ph,i} ≤
√
D2−h for 0 ≤ h ≤

hmax and 1 ≤ i ≤ Ih. Moreover, Ih ≤ 2Dh.

There exists a hierarchical partitioning that satisfies Assumption 5 as we may take 2D

subsets of box [0, 1]D by dividing each coordinate direction equally and repeat the process
for each subset.

Our framework adopts the tree-search mechanism as done for many optimistic optimiza-
tion algorithms such as SOO, StoSOO, SequOOL, and StroquOOL. These algorithms select an
arbitrary decision θh,i for each cell Ph,i as its representative in advance, and evaluating
cell Ph,i means deploying decision θh,i. If f(·, z) is Lθ-Lipschitz continuous for any z, then
Assumption 5 implies that for any θh,i ∈ Ph,i,

PR(θh,i)− inf
θ∈Ph,i

PR(θ) ≤ Lθ

√
D2−h + LzεD

α/22−αh.

However, this bound may be too weak for our setting because the term Lθ

√
D2−h can be

much larger than the other term LzεD
α/22−αh when the sensitivity parameter ε is small. In

contrast, based on performative feedback, we use a specific rule for choosing a representative
decision θh,i given by

θh,i ∈ argmin
θ∈Ph,i

DPR(θh−1,j , θ).

Here, θh−1,j is the representative of the parent cell Ph−1,j of depth h − 1 containing Ph,i.
Based on the performative feedback about decision θh−1,j , we may compute the decoupled
performative risk DPR(θh−1,j , θ). Note that the procedure of choosing θh,i is much cheaper
than computing performative confidence bounds because the former requires evaluating
decisions in a local cell Ph,i whereas the latter considers the entire domain Θ.

Explaining the important components of our framework, we present Algorithm 1 for the
full-feedback setting. logT denotes the T -th harmonic number, that is, logT =

∑T
t=1 1/t.
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Algorithm 1 Deterministic Optimistic Optimization with Performative Feedback (DOOP)

Input: test budget T , hierarchical partitioning P, hmax =
⌊
T/2DlogT

⌋
Set L0 ← {P0,1} and initialize L1 ← ∅
Take a solution θ0,1 ∈ P0,1
Run Open(P0,1)
for h = 1 to hmax do
Initialize Lh+1 ← ∅
Take ⌊hmax/h⌋ cells with the ⌊hmax/h⌋ smallest values in {PR(θh,i) : Ph,i ∈ Lh}
for each Ph,i of the ⌊hmax/h⌋ cells do
Run Open(Ph,i)

end for
end for
Take (h, i) ∈ argmin(h,i) {PR(θh,i) : h ∈ [0 : hmax + 1],Ph,i ∈ Lh}
Return θT ← θh,i

Subroutine Open(Ph,i)
Input: cell Ph,i
for each child cell Ph+1,j of Ph,i do
Take a solution θh+1,j ∈ argminθ∈Ph+1,j

DPR(θh,i, θ) and deploy it
Receive D(θh+1,j) to compute DPR(θh+1,j , θ) for θ ∈ Ph+1,j

Update Lh+1 ← Lh+1 ∪ {Ph+1,j}
end for

We use notation [a : b] to denote the set {a, a+ 1, . . . , b} for integers a, b with a < b. We
adopt SequOOL by Bartlett et al. (2019) as the backbone of Algorithm 1. As SequOOL, our
algorithm explores the depth sequentially by testing multiple cells at the same depth level
before going down to the next level. As going deeper, fewer cells are tested, thus focusing on
a narrower area. This can be viewed as an exploration-exploitation procedure. Moreover,
opening a cell Ph,i of depth h means considering its child cells {Ph+1,j : j ∈ J} at h+ 1 by
deploying their representative decisions θh+1,j . In Algorithm 1, Lh denotes the set of cells
Ph,i of depth h whose representative decision θh,i has been deployed. Then L0, . . . ,Lhmax+1

naturally form a tree whose vertices correspond to cells.

To analyze the performance of Algorithm 1, we use the notion of near-optimality dimen-
sion, as mentioned in the introduction. Its definition has been refined, and we adopt the
version considered by Grill et al. (2015); Bartlett et al. (2019), that is, the near-optimality
dimension associated with a given hierarchical partitioning.

Definition 4 (near-optimality dimension) For any ν > 0, C ≥ 1, and ρ ∈ (0, 1), the
(ν, ρ, C)-near-optimality dimension, denoted d(ν, ρ, C), of f with respect to the hierarchical
partitioning P is defined as

d(ν, ρ, C) = inf
{
d ∈ R+ : Nh(6νρ

h) ≤ Cρ−dh ∀h ≥ 0
}

where Nh(ϵ) is the number of cells Ph,i of depth h such that infθ∈Ph,i
PR(θ) ≤ PR(θPO)+ ϵ.

10
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In particular, we will use the ((2
√
D)αLzε, 2

−α, 1)-near-optimality dimension. It gets large
as the sensitivity parameter ε increases. Note that by Assumption 5, the number of cells
of depth h is at most 2Dh. This gives rise to a global upper bound on d(ν, 2−α, 1) that
holds for any ν > 0, that is, d(ν, 2−α, 1) ≤ D/α. Hence, when ε is small and PR(·) has
sufficient curvature around the performative-optimal solution θPO, the ((2

√
D)αLzε, 2

−α, 1)-
near-optimality dimension is supposed to be much smaller than D/α. When the ambient
dimension D is fixed, one may regard the factor (2

√
D)α as a fixed constant and hide it by

replacing Nh(6νρ
h) with Nh(6(2

√
D)ανρh) in the definition of d(ν, ρ, C).

The following lemma is the key to analyzing the performance of Algorithm 1. Follow-
ing Bartlett et al. (2019), we define ⊥h as the depth of the deepest cell containing θPO
opened until Algorithm 1 finishes opening cells of depth h.

Lemma 5 Let d denote the ((2
√
D)αLzε, 2

−α, 1)-near-optimality dimension. Then θT re-
turned by Algorithm 1 satisfies the following bound.

PR(θT )− PR(θPO) ≤ 2(2
√
D)αLzε2

−α(⊥hmax+1).

Note that the bound on the optimality gap scales with Lzε, not Lθ+Lzε. Based on this, we
prove the following theorem which provides a theoretical guarantee on the performance of
Algorithm 1. As in the analysis of SequOOL by Bartlett et al. (2019), we use the Lambert W
function. The function is to describe the solution h to the equation x = h · eh as h = W (x).

Theorem 6 Let d denote the ((2
√
D)αLzε, 2

−α, 1)-near-optimality dimension. For the full-
feedback setting, Algorithm 1 after T decision deployments finds a solution θ with

PR(θ)− PR(θPO) ≤

{
2(2
√
D)αLzε2

−αhmax , if d = 0,

2(2
√
D)αLzεe

−(1/d)W (hmaxαd log 2), if d > 0

where hmax =
⌊
T/2DlogT

⌋
. Moreover, if d > 0 and hmaxαd log 2 ≥ e, then θ satisfies

PR(θ)− PR(θPO) ≤ 2(2
√
D)αLzε

(
hmaxαd log 2

log(hmaxαd log 2)

)− 1
d

.

As hmax = Ω(T/ log T ) and hmax = O(T/ log T ), we deduce from Theorem 6 with α = 1 the
optimality gap bounds in Theorem 1. We provide the proof of the theorem in Appendix A.
We follow the proof outline of Bartlett et al. (2019) for SequOOL, but we need to adapt
the analysis to our specific design of the procedure of opening a cell based on performative
feedback.

The last remark is that the optimality gap PR(θ)−PR(θPO) is the simple regret whereas
Jagadeesan et al. (2022) studies the cumulative regret incurred by their algorithm. Although
Theorem 6 characterizes an upper bound on the simple regret only, we later report our
numerical results on the cumulative regret of Algorithm 1.

5 Data-Driven Setting

For the data-driven setting, we receive a few data samples as performative feedback, which
provides an estimation of the distribution. Through the data samples, we obtain the em-
pirical distribution D̂(θ) after deploying decision θ. Then we may compute the estimator

11
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D̂PR(θ, θ′) of the decoupled performative risk DPR(θ, θ′) for other decisions θ′. Here, con-

trolling the estimation error |DPR(θ, θ′)− D̂PR(θ, θ′)| is crucial to achieve a better perfor-
mance. To reduce the error, we evaluate a cell multiple times to obtain enough data samples
from the distribution of the representative decision. Following StroquOOL by Bartlett et al.
(2019), Algorithm 2 implements this idea, extending Algorithm 1 to the data-driven setting.

As Algorithm 1, Algorithm 2 takes fewer cells at deeper depth levels, thereby imple-
menting the exploration-exploitation trade-off principle. On top of this, the algorithm keeps
track of the number of times each cell has been evaluated. When exploring cells at a certain
depth, the algorithm distributes the evaluation budget over cells based on how many times
they have been evaluated. Among the cells that have been evaluated many times, we focus
on a few that have a low performative risk. For the cells that have not been evaluated many
times, we distribute the evaluation budget over more cells, among which we encourage ex-
ploration. Furthermore, as in StroquOOL, Algorithm 2 has the cross-validation phase, in
which we focus on cells whose representative decision has a low estimated performative risk.

Let nopen
h,i denote the number of times cell Ph,i is opened, and let ndeploy

h,i denote the
number of times its representative decision θh,i is deployed. Note that if Ph+1,j is a child cell

of Ph,i, then we have nopen
h,i = ndeploy

h+1,j . Recall that [a : b] denotes the set {a, a+ 1, . . . , b} for
integers a, b with a < b. For a positive integer a, let [a] denote the set {1, . . . , a}. Moreover,
as in Algorithm 1, L0, . . . ,Lhmax+1 represent the tree search structure of Algorithm 2.

In what follows, we analyze the performance of Algorithm 2. Note that we compute
D̂PR(θ, θ′) for many pairs of θ and θ′, and at the same time, we need the estimation error

|DPR(θ, θ′)− D̂PR(θ, θ′)| uniformly bounded for all pairs. To achieve this, we introduce the
Rademacher complexity associated with the loss function f .

Definition 7 (Rademacher complexity) Given an objective function f , the Rademacher
complexity C∗(f) is defined as

C∗(f) = sup
θ∈Θ

sup
n∈N

√
n · Eϵ,zθ

 sup
θ′∈Θ

∣∣∣∣∣∣ 1n
n∑

j=1

ϵjf(θ
′, zθj )

∣∣∣∣∣∣
 ,

where ϵj ∼ Rademacher and zθj ∼ D(θ) for j ∈ [n], which are all independent of each other.

Given the Rademacher complexity of the loss function, we may provide a uniform upper
bound on the estimation error. Let us define the clean event under which the estimation
error |DPR(θ, θ′)− D̂PR(θ, θ′)| is uniformly bounded over all pairs.

Definition 8 (Clean event) We define the clean event, denoted Eclean,δ, as the event that

sup
θ∈Ph,i

∣∣∣D̂PR(θh,i, θ)−DPR(θh,i, θ)
∣∣∣ ≤ 2C∗(f) + 2

√
log(T/δ)√

ndeploy
h,i m0

∀Ph,i ∈ Lh, ∀h ∈ [hmax + 1]

and ∣∣∣P̂R(θT (p))− PR(θT (p))
∣∣∣ ≤ 2C∗(f) + 2

√
log(T/δ)√

hmaxm0
∀p ∈ [0 : pmax].

We may prove that the clean event holds with high probability, parameterized by δ.

12
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Algorithm 2 Stochastic Optimistic Optimization with Performative Feedback (SOOP)

Input: test budget T , hierarchical partitioning P,

hmax =

⌊
T

2D+1(log2 T + 1)2

⌋
, pmax = ⌊log2 hmax⌋

◀Initialization Phase ▶
Set L0 ← {P0,1} and initialize L1 ← ∅
Take a solution θ0,1 ∈ P0,1, deploy it hmax times, and set ndeploy

0,1 ← hmax

◀ Exploration Phase ▶
Run Open(P0,1, hmax)
for h = 1 to hmax do
Initialize Lh+1 ← ∅
for p = ⌊log2(hmax/h)⌋ down to 0 do
Take ⌊hmax/h2

p⌋ cells that correspond to the ⌊hmax/h2
p⌋ smallest values in{

P̂R(θh,i) : Ph,i ∈ Lh, nopen
h,i = 0, ndeploy

h,i ≥ 2p
}

for each Ph,i of the ⌊hmax/h2
p⌋ cells do

Run Open(Ph,i, 2p)
end for

end for
end for

◀ Cross-validation Phase ▶
for p = 0 to pmax do

Take (h, i) ∈ argmin(h,i)

{
P̂R(θh,i) : h ∈ [0 : hmax + 1],Ph,i ∈ Lh, ndeploy

h,i ≥ 2p
}

Set θT (p)← θh,i
Deploy hmax times solution θT (p) to form P̂R(θT (p))

end for
Return θT ← θT (p) with p ∈ argminp∈[0:pmax] P̂R(θT (p))

Subroutine Open(Ph,i, n)
Input: cell Ph,i, number n
Set nopen

h,i ← n
for each child cell Ph+1,j of Ph,i do
Take θh+1,j ∈ argminθ∈Ph+1,j

D̂PR(θh,i, θ), deploy it n times, and set ndeploy
h+1,j ← n

Form D̂PR(θh+1,j , θ) for θ ∈ Ph+1,j

Initialize nopen
h+1,j ← 0

Update Lh+1 ← Lh+1 ∪ {Ph+1,j}
end for

Lemma 9 The clean event holds with probability at least 1− δ, i.e., P [Eclean,δ] ≥ 1− δ.

13
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Next, we present the key lemma for our analysis. Following Bartlett et al. (2019), we
define ⊥h,p as the depth of the deepest cell containing the performative optimal solution θPO
opened for at least 2p times until Algorithm 2 finishes opening cells of depth h.

Lemma 10 Assume that the clean event Eclean,δ holds for some δ ∈ (0, 1), and let d denote
the ((2

√
D)αLzε, 2

−α, 1)-near-optimality dimension d((2
√
D)αLzε, 2

−α, 1). Then for any
p ∈ [0 : pmax], the following bound on the regret holds.

PR(θT )− PR(θPO)

≤ 2(2
√
D)αLzε2

−α(⊥hmax,p+1) +
8C∗(f) + 8

√
log(T/δ)√

2pm0
+

4C∗(f) + 4
√
log(T/δ)√

hmaxm0
.

Therefore, to provide an upper bound on the simple regret, it is sufficient to provide upper
bounds on the three terms on the right-hand side. In particular, the second term did
not appear in the analysis of StroquOOL by Bartlett et al. (2019). Nevertheless, we show
that under Algorithm 2, the three terms are controlled, thereby leading to the desired
performance guarantees.

We saw that the simple regret of Algorithm 1 behaves differently depending on whether
the near-optimality dimension d satisfies d = 0 or d > 0. Similarly, the simple regret
of Algorithm 2 varies depending on problem parameters. To illustrate, let us define the
low-noise and high-noise regimes. For simplicity, we use notations ν and B defined as

ν = (2
√
D)αLzε and B =

2
√
2
(
C∗(f) +

√
log(T/δ)

)
√
m0

.

Here, ν captures the term Lzε, and B is related to the estimation error. Intuitively, if B is
high, then the estimation error is large. We define h̃ as

h̃ =
1

α(d+ 2) log 2
W

(
hmaxν

2α(d+ 2) log 2

B2

)
=

1

α(d+ 2) log 2

(
log

(
hmaxν

2α(d+ 2) log 2

B2

)
− log log

(
hmaxν

2α(d+ 2) log 2

B2

))
+ o(1)

= Ω

(
log

(
L2
zε

2 T

log T

))
We refer to the case B < Lzε · 2−αh̃ as the low-noise regime and the case B ≥ Lzε · 2−αh̃ as
the high-noise regime.

Theorem 11 Let d denote the ((2
√
D)αLzε, 2

−α, 1)-near-optimality dimension. For the
data-driven setting, Algorithm 2 after T decision deployments finds a solution θ that satisfies
the following with probability at least 1− δ. Under the low-noise regime with d = 0,

PR(θ)− PR(θPO) ≤ (2 + 2
√
2)(2
√
D)αLzε2

−αhmax +
4C∗(f) + 4

√
log(T/δ)√

hmaxm0

where hmax = ⌊T/2D+1(log2 T + 1)2⌋. Under the low-noise regime with d > 0,

PR(θ)− PR(θPO) ≤ (2 + 2
√
2)(2
√
D)αLzεe

−(1/d)W (hmaxαd log 2) +
4C∗(f) + 4

√
log(T/δ)√

hmaxm0
.
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(a) Ackley Function A(x1, x2) (b) Rastrigin Function R(x1, x2)

Figure 1: Contour plots of the Ackley and Rastrigin functions on [−5.12, 5.12]2

Under the high-noise regime,

PR(θ)− PR(θPO) ≤ 6(2
√
D)αLzε2

−αh̃ +
4C∗(f) + 4

√
log(T/δ)√

hmaxm0
.

Moreover, if hmax ≥ max{1, e/αd log 2, B2e/ν2α(d + 2) log 2}, then under the low-noise
regime,

PR(θ)− PR(θPO) ≤

(2 + 3
√
2)(2
√
D)αLzε2

−αhmax , if d = 0,

(2 + 3
√
2)(2
√
D)αLzε

(
hmaxαd log 2

log(hmaxαd log 2)

)−1/d
, if d > 0.

Lastly, if hmax ≥ B2e/ν2α(d+ 2) log 2, then under the high-noise regime,

PR(θ)− PR(θPO)

≤ 6(2
√
D)αLzε

(
hmaxν

2α(d+ 2) log 2/B2

log(hmaxν2α(d+ 2) log 2/B2)

)− 1
d+2

+
4C∗(f) + 4

√
log(T/δ)√

hmaxm0
.

As hmax = Ω(T/ log T ), hmax = O(T/ log T ), and h̃ = Ω(log(L2
zε

2T/ log T )), we deduce
from Theorem 11 with α = 1 the simple regret bounds in Theorem 2. We provide the proof
of the theorem in Appendix B.

6 Experiments

In this section, we empirically demonstrate how our algorithms, DOOP for the full-feedback
case and SOOP for the data-driven setting, numerically perform for performative regret
minimization. We compare DOOP and the existing methods SOO, SequOOL, and SZooming

for the full-feedback case, and we test SOOP against StoSOO, StroquOOL, and SZooming

for the data-driven setting. Here, SZooming indicates the variant of the zooming algorithm
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(a) f(θ, z) = A(θ) + z with z ∼ Exp (1/R(θ)) (b) f(θ, z) = R(θ) + z with z ∼ Exp (1/A(θ))

Figure 2: Cumulative regret comparison in the full-feedback case

by Jagadeesan et al. (2022). For SOO, StoSOO, SequOOL, and StroquOOL, we used the package
developed by Li et al. (2023a).

We tested the algorithms for synthetic objectives on a bounded two-dimensional domain
for optimization. In our experiments, we used two multi-modal functions as shown in
Figure 1 to express our loss function f(θ, z) and the distribution map D(θ); the first is the
Ackley function given by

A(x1, x2) = −20 · exp
[
−0.2

√
0.5(x21 + x22)

]
− exp [0.5 (cos(2πx1) + cos(2πx2))]

and the second is the Rastrigin function given by

R(x1, x2) = 20 +
(
x21 − 10 cos(2πx1)

)
+
(
x22 − 10 cos(2πx2)

)
.

Note that both functions have a global minimum at A(0, 0) = R(0, 0) = 0, and their domains
are both [−5.12, 5.12]2. With the Ackley and Rastrigin functions, we define two types of
the loss function.

• f(θ, z) = A(θ) + z with z ∼ D(θ) = Exp (1/R(θ)) and θ ∈ [−5.12, 5.12]2,

• f(θ, z) = R(θ) + z with z ∼ D(θ) = Exp (1/A(θ)) and θ ∈ [−5.12, 5.12]2

where Exp(1/λ) denotes the exponential distribution with mean λ. In both cases, we have

PR(θ) = Ez∼D(θ)[f(θ, z)] = A(θ) +R(θ).

For the full-feedback case, we test DOOP with SOO, SequOOL, and SZooming, and the
performative risk is constructed based on combining the Ackley function and the Rastrigin
function. Recall that the tree search-based algorithms, not including SZooming, require a
hierarchical partitioning, and for them, we used the binary partitioning. For the tree search-
based algorithms, we used the same maximum level of depth hmax. For SZooming, the
decision domain Θ is set to be a finite set of 3,025 discrete points on domain [−5.12, 5.12]2.
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(a) f(θ, z) = A(θ) + z with z ∼ Exp (1/R(θ)) (b) f(θ, z) = R(θ) + z with z ∼ Exp (1/A(θ))

Figure 3: Cumulative regret comparison in the data-driven setting

In addition, the sensitivity parameter ϵ and the Lipschitz constant Lz are chosen according
to the shape of the objective functions on the decision domain Θ; both ϵ and Lz for z ∼
Exp(1/f(θ)) is calculated to be sup (|f(θ1)− f(θ2)|/∥θ1 − θ2∥) for any θ1, θ2 ∈ Θ.

For the data-driven setting, we test SOOP with StoSOO, StroquOOL, and SZooming. The
performative feedback consists of m0 = 10 samples drawn randomly from D(θ). While
both A(θ) and R(θ) are multi-modal on the given domain, each has different sets of local
optima and range. In particular, R(θ) yields values in a broader range, thus the associated
distribution Exp (1/R(θ)) has a larger variance since the variance of Exp(1/λ) is λ2. The
other components of the experimental setup are the same as those for the full-feedback case.

Figures 2 and 3 summarize our experimental results. As shown in Figures 2 and 3, DOOP
and SOOP outperform the other methods in terms of cumulative regret. We have noticed
that SZooming incurs a very high cumulative regret in the first phase, and this is because
there exist high estimation errors in the first phase of SZooming and it turns out that the
majority of exploration of SZooming occurs during the first phase. Moreover, SZooming
is not computationally efficient, as it takes a huge amount of time to find an optimal
decision. For the full-feedback case, SZooming takes 73691 seconds for f(θ, z) = A(θ) + z
with z ∼ D(θ) = Exp (1/R(θ)) and 3737.0 seconds for f(θ, z) = R(θ) + z with z ∼ D(θ) =
Exp (1/A(θ)). In contrast, DOOP takes 4.2390 seconds and 2.3609 seconds, respectively. For
the data-driven case, SZooming takes 73112 seconds for f(θ, z) = A(θ)+ z with z ∼ D(θ) =
Exp (1/R(θ)) and 3999.4 seconds for f(θ, z) = R(θ) + z with z ∼ D(θ) = Exp (1/A(θ)). In
contrast, SOOP takes 2.5896 seconds and 1.4877 seconds, respectively.
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Appendix A. Regret Analysis of DOOP

A.1 Approximation Bounds under the Hierarchical Partitioning Scheme

In this section, we prove two lemmas that are related to the quality of the representative
decision of each cell.

Lemma 12 For θ ∈ Ph,i and Ph,i ∈ Lh, we have

|DPR(θh,i, θ)− PR(θ)| ≤ (
√
D)αLzε2

−αh.

Proof Note that

DPR(θh,i, θ) ≥ PR(θ)− Lzε∥θh,i − θ∥α ≥ PR(θ)− (
√
D)αLzε2

−αh

where the first inequality is from Lemma 3 and the second inequality follows from Assump-
tion 5 with θh,i, θ ∈ Ph,i. Similarly, we can argue that DPR(θh,i, θ) ≤ PR(θ) + Lzε∥θh,i −
θ∥α ≤ PR(θ) + (

√
D)αLzε2

−αh, as required.

Lemma 13 Let Ph,i ∈ Lh. Then

PR(θh,i) ≤ inf
θ∈Ph,i

PR(θ) + 2(2
√
D)αLzε2

−αh.

Proof Let θ⋆h,i ∈ argminθ∈Ph,i
PR(θ), and let Ph−1,j be the parent cell of Ph,i. Note that

PR(θh,i) ≤ DPR(θh−1,j , θh,i) + (2
√
D)αLzε2

−αh ≤ DPR(θh−1,j , θ
⋆
h,i) + (2

√
D)αLzε2

−αh

where the first inequality follows from Lemma 12 and the second inequality holds due to
our choice of θh,i minimizing DPR(θh−1,j , θ) over θ ∈ Ph,i. Lastly, by Lemma 12, we have

DPR(θh−1,j , θ
⋆
h,i) ≤ PR(θ⋆h,i) + (2

√
D)αLzε2

−αh.

Consequently, it follows that PR(θh,i) ≤ PR(θ⋆h,i) + 2(2
√
D)αLzε2

−αh, as required.

A.2 Proof of Theorem 6

Recall that ⊥h is defined on the depth of the deepest cell containing θPO opened until
Algorithm 1 finishes opening cells of depth h.

Lemma 14 Let d denote the ((2
√
D)αLzε, 2

−α, 1)-near-optimality dimension. For any h ∈
[hmax], if hmax/h ≥ 2αhd, then ⊥h = h with ⊥0 = 0.

Proof Let h ∈ [hmax], and assume that h satisfies the condition of the lemma. Then we
will argue by induction that ⊥h′ = h′ for all h′ ∈ [h], thereby proving that ⊥h = h.

Note that P0,1 = Θ contains θPO and P0,1 is opened, so ⊥0 = 0. Next, we assume that
⊥h′−1 = h′ − 1 for some h′ ∈ [h]. Then it is sufficient to show that ⊥h′ = h′. Let i⋆h′−1
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denote the index such that Ph′−1,i⋆
h′−1

is the cell containing θPO at depth h′−1. Algorithm 1

opens ⌊hmax/h
′⌋ cells from depth h′ cells. Suppose for a contradiction that cell Ph′,i⋆

h′
is not

one of them. This implies that for each solution θh′,i of the ⌊hmax/h
′⌋ cells from depth h′,

we have PR(θh′,i) ≤ PR(θh′,i⋆
h′
). Consequently, it follows that

PR(θh′,i) ≤ PR(θh′,i⋆
h′
) ≤ PR(θPO) + 2(2

√
D)αLzε2

−αh′

where the second inequality follows from Lemma 13 as θPO is contained in cell Ph′,i⋆
h′
. This

implies that

Nh(6(2
√
D)αLzε2

−αh′
) ≥

⌊
hmax

h′

⌋
+ 1 ≥

⌊
hmax

h

⌋
+ 1 ≥ 2αhd + 1 ≥ 2αh

′d + 1

where ⌊hmax/h
′⌋ comes from cells Ph′,i and 1 is due to cell Ph′,i⋆

h′
in the first inequality,

the second and the fourth inequalities hold because h′ ≤ h, and the third inequality comes
from the condition of the lemma. This in turn implies that Nh(6(2

√
D)αLzε2

−αh′
) > 2αh

′d,
a contradiction. Therefore, it follows that ⊥h′ = h′. Then the induction argument shows
that ⊥h = h, as required.

Based on Lemma 14, we prove Lemma 5 that shows

PR(θT )− PR(θPO) ≤ 2(2
√
D)αLzε2

−α(⊥hmax+1).

Proof [Proof of Lemma 5] Let P⊥hmax+1,i⋆ be the cell at depth ⊥hmax +1 containing θPO.
Note that

PR(θT ) ≤ PR(θ⊥hmax+1,i⋆) ≤ PR(θPO) + 2(2
√
D)αLzε2

−α(⊥hmax+1)

where the first inequality holds due to the choice of θT and the second inequality follows
from Lemma 13.

For simplicity, we introduce notations ρ and ν defined as

ρ = 2−α and ν = (2
√
D)αLzε.

Moreover, we define h̄ as the number satisfying

hmax

h̄
= ρ−dh̄.

Note that if d = 0, then h̄ = hmax. If d > 0, then

h̄ =
1

d log(1/ρ)
W (hmaxd log(1/ρ))

where W (·) denotes the Lambert W function.

Lemma 15 (Bartlett et al. (2019)) Let d denote the (ν, ρ, 1)-near-optimality dimension.
Then ⊥hmax + 1 ≥ h̄.
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Combining Lemmas 5 and 15, we are ready to provide the desired regret bounds on Algo-
rithm 1.
Proof [Proof of Theorem 6] As h̄ = hmax when d = 0 and h̄ = W (hmaxαd log 2)/αd log 2,
it follows directly from Lemmas 5 and 15 that

PR(θ)− PR(θPO) ≤

{
2(2
√
D)αLzε2

−αhmax , if d = 0,

2(2
√
D)αLzεe

−(1/d)W (hmaxαd log 2), if d > 0.

Lastly, Hoorfar and Hassani (2008) showed that if x ≥ e, then W (x) ≥ log(x/ log(x)).
Hence, if d > 0 and hmaxαd log 2 ≥ e, then θ satisfies

PR(θ)− PR(θPO) ≤ 2(2
√
D)αLzε

(
hmaxαd log 2

log(hmaxαd log 2)

)− 1
d

,

as required.

Appendix B. Regret Analysis of SOOP

B.1 Total Number of Solution Deployments

Recall that

hmax =

⌊
T

2D+1(log2 T + 1)2

⌋
and pmax = ⌊log2 hmax⌋.

Lemma 16 The total number of solution deployments before the cross-validation phase is
at most 3T/4, and in the cross-validation phase, the total number of solution deployments
is at most T/4.

Proof Note that as T ≥ 2, we have log2 T+1 ≥ 2, in which case hmax ≤ T/2D+3. Hence, we
deploy solution θ0,1 at most T/2D+3 ≤ T/8 times. Moreover, we open P0,1 at most T/2D+3

times, and since P0,1 has 2D child cells, it corresponds to at most T/8 solution deployments.

Next, during the exploration phase, we make
∑hmax

h=1

∑pmax
p=0 ⌊hmax/h2

p⌋2p openings. Here,

hmax∑
h=1

pmax∑
p=0

⌊
hmax

h2p

⌋
· 2p ≤

hmax∑
h=1

pmax∑
p=0

hmax

h
= (pmax + 1)hmax

hmax∑
h=1

1

h
≤ hmax(pmax + 1)2 ≤ T

2D+1

where the last inequality holds due to pmax ≤ log2 T . Since each opening requires 2D solution
deployments, it incurs T/2 solution deployments. In total, before the cross-validation phase,
we make T/8 + T/8 + T/2 = 3T/4 solution deployments.

In the cross-validation phase, the number of solution deployments is given by

hmax(pmax + 1) ≤ T

2D+1(log2 T + 1)
≤ T

2D+2
≤ T

4
,

as required.
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B.2 Rademacher Complexity-Based Concentration Bounds for Estimating the
Performative Risk

In this section, we prove Lemma 9 which shows that the clean event holds with probability
at least 1− δ, i.e., P[Eclean,δ] ≥ 1− δ.
Proof [Proof of Lemma 9] By Lemma 16, Algorithm 2 deploys at most T solutions. Let
ndistinct denote the number of distinct solutions deployed by Algorithm 2. As new solutions
are deployed during the exploration phase, we have ndistinct ≤ 3T/4 by Lemma 16. Among
the ndistinct solutions, we use notation (h(s), i(s)) to indicate the cell Ph(s),i(s) containing

the sth deployed solution for 1 ≤ s ≤ ndistinct. As hmax is fixed, ndistinct, h(s), and ndeploy
h(s),i(s)

are all deterministic functions of s. In particular, we use notation ndeploy
s := ndeploy

h(s),i(s) to

emphasize that ndeploy
h(s),i(s) is deterministic in s. Then we maintain a virtual tape of samples

for each solution θ. Basically, for each solution θ, we maintain {zθj : j = 1, . . . , Tm0}, and if

θ becomes the sth solution deployed, then we use ndeploy
s m0 samples in {zθj : j = (ndeploy

1 +

· · ·+ndeploy
s−1 )m0 +1, . . . , (ndeploy

1 + · · ·+ndeploy
s )m0} to estimate D̂(θ). For 1 ≤ s ≤ ndistinct,

let us define Es
clean,δ as the event that

sup
θ∈Ps

∣∣∣D̂PR(θs, θ)−DPR(θs, θ)
∣∣∣ ≤ 2C∗(f) + 2

√
log(T/δ)√

ndeploy
s m0

where θs denotes the sth solution deployed θh(s),i(s), Ps denotes Ph(s),i(s) containing the sth

solution deployed, and ndeploy
s denotes the number of times solution θh(s),i(s) is deployed.

Moreover, for p ∈ [0 : pmax], let us define ET,p
clean,δ as the event that∣∣∣P̂R(θT (p))− PR(θT (p))
∣∣∣ ≤ 2C∗(f) + 2

√
log(T/δ)√

hmaxm0
.

Then we know that

P[Eclean,δ] = P[E1
clean,δ ∩ · · · ∩ Endistinct

clean,δ ∩ ET,0
clean,δ ∩ · · · ∩ ET,pmax

clean,δ ]

≥ 1−
ndistinct∑
s=1

P[¬Es
clean,δ]−

pmax∑
p=0

P[¬ET,p
clean,δ]

where the inequality is the union bound. For simplicity, let J denote J = {(ndeploy
1 + · · ·+

ndeploy
s−1 )m0 + 1, . . . , (ndeploy

1 + · · ·+ ndeploy
s )m0}. Note that

P[¬Es
clean,δ] = P

 sup
θ∈Ps

∣∣∣D̂PR(θs, θ)−DPR(θs, θ)
∣∣∣ > 2C∗(f) + 2

√
log(T/δ)√

ndeploy
s m0


= P

 sup
θ∈Ps

∣∣∣∣∣∣ 1

ndeploy
s m0

∑
j∈J

f(θ, zθsj )−DPR(θs, θ)

∣∣∣∣∣∣ > 2C∗(f) + 2
√

log(T/δ)√
ndeploy
s m0


≤ P

sup
θ∈Θ

∣∣∣∣∣∣ 1

ndeploy
s m0

∑
j∈J

f(θ, zθsj )−DPR(θs, θ)

∣∣∣∣∣∣ > 2C∗(f) + 2
√
log(T/δ)√

ndeploy
s m0
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where the inequality holds because Ps ⊆ Θ. Here, the right-most side of this inequality is
equal to

Eθ̄∼θs

P
sup
θ∈Θ

∣∣∣∣∣∣ 1

ndeploy
s m0

∑
j∈J

f(θ, zθ̄j )−DPR(θ̄, θ)

∣∣∣∣∣∣ > 2C∗(f) + 2
√

log(T/δ)√
ndeploy
s m0

| θs = θ̄

 .

Therefore, to provide an upper bound on P[¬Es
clean,δ], it suffices to provide an upper bound

on

P

sup
θ∈Θ

∣∣∣∣∣∣ 1

ndeploy
s m0

∑
j∈J

f(θ, zθ̄j )−DPR(θ̄, θ)

∣∣∣∣∣∣ > 2C∗(f) + 2
√

log(T/δ)√
ndeploy
s m0

| θs = θ̄

 (1)

for every θ̄ ∈ Θ. Note that data samples in {zθ̄j : j = (ndeploy
1 + · · · + ndeploy

s−1 )m0 +

1, . . . , (ndeploy
1 + · · · + ndeploy

s )m0} are independent of the event that θs = θ̄ because the
samples are obtained after the sth solution for deployment is chosen. Therefore, the prob-
ability term (1) is equal to

P

sup
θ∈Θ

∣∣∣∣∣∣ 1

ndeploy
s m0

∑
j∈J

f(θ, zθ̄j )−DPR(θ̄, θ)

∣∣∣∣∣∣ > 2C∗(f) + 2
√

log(T/δ)√
ndeploy
s m0

 . (2)

What remains is to bound this probability term for every θ̄ ∈ Θ. By the bounded differences
inequality and Assumption 4, with probability at least 1− (δ/T ), we have

sup
θ∈Θ

∣∣∣∣∣∣ 1

ndeploy
s m0

∑
j∈J

f(θ, zθ̄j )−DPR(θ̄, θ)

∣∣∣∣∣∣
≤ E

sup
θ∈Θ

∣∣∣∣∣∣ 1

ndeploy
s m0

∑
j∈J

f(θ, zθ̄j )−DPR(θ̄, θ)

∣∣∣∣∣∣
+

√
2 log(T/δ)

ndeploy
s m0

.

(3)

Let ϵj denote i.i.d. Rademacher random variables. Then by a symmetrization argument,
the right-hand side of (3) is at most

E

sup
θ∈Θ

∣∣∣∣∣∣ 1

ndeploy
s m0

∑
j∈J

f(θ, zθ̄j )−DPR(θ̄, θ)

∣∣∣∣∣∣
+

√
2 log(T/δ)

ndeploy
s m0

≤ 2 · E

sup
θ∈Θ

∣∣∣∣∣∣ 1

ndeploy
s m0

∑
j∈J

f(θ, zθ̄j ) · ϵj

∣∣∣∣∣∣
+

√
2 log(T/δ)

ndeploy
s m0

≤ 2√
ndeploy
s m0

· sup
n≥1

√
n · E

sup
θ∈Θ

∣∣∣∣∣∣ 1n
n∑

j=1

f(θ, zθ̄j ) · ϵj

∣∣∣∣∣∣
+

√
2 log(T/δ)

ndeploy
s m0

≤
2C∗(f) + 2

√
log(T/δ)√

ndeploy
s m0

(4)
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where {zθj }j∈N denotes an infinite sequence of samples from D(θ) for θ ∈ Θ. By (3)
and (4), the probability term (2) as well as (1) is at most δ/T . Therefore, it follows
that P[¬Es

clean,δ] ≤ δ/T .

Next, we consider P[¬ET,p
clean,δ]. Note that the total number of solution deployments

during the exploration phase, denoted ntotal is deterministic. Note that θT (p) is deployed

for hmax times and obtain samples {zθT (p)
j : j ∈ J ′} where J ′ = {(ntotal + phmax)m0 +

1, . . . , (ntotal + (p+ 1)hmax)m0}. Then we have

P[¬ET,p
clean,δ]

= P

[∣∣∣P̂R(θT (p))− PR(θT (p))
∣∣∣ > 2C∗(f) + 2

√
log(T/δ)√

hmaxm0

]

= P

∣∣∣∣∣∣ 1

hmaxm0

∑
j∈J ′

f(θT (p), z
θT (p)
j )−DPR(θT (p), θT (p))

∣∣∣∣∣∣ > 2C∗(f) + 2
√
log(T/δ)√

hmaxm0


≤ P

sup
θ∈Θ

∣∣∣∣∣∣ 1

hmaxm0

∑
j∈J ′

f(θ, z
θT (p)
j )−DPR(θT (p), θ)

∣∣∣∣∣∣ > 2C∗(f) + 2
√
log(T/δ)√

hmaxm0

 .

As before, we can argue that P[¬ET,p
clean,δ] ≤ δ/T . Since ndistinct + (pmax + 1)hmax ≤ T

by Lemma 16, it follows that P[Eclean,δ] ≥ 1− δ as ndistinct ≤ T .

B.3 Approximation Bounds under the data-driven setting

In this section, we prove the following lemma analyzing the quality of the representative
decision of each cell under the data-driven setting.

Lemma 17 Assume that Eclean,δ holds for some δ ∈ (0, 1). Let Ph,i ∈ Lh, and let Ph−1,j

be the parent cell of Ph,i. Then

PR(θh,i) ≤ inf
θ∈Ph,i

PR(θ) + 2(2
√
D)αLzε2

−αh +
4C∗(f) + 4

√
log(T/δ)√

ndeploy
h−1,j m0

.

Proof Let θ⋆h,i ∈ argminθ∈Ph,i
PR(θ). By Lemma 12,

PR(θh,i) ≤ DPR(θh−1,j , θh,i) + (2
√
D)αLzε2

−αh.

As Eclean,δ holds, we have

DPR(θh−1,j , θh,i) ≤ D̂PR(θh−1,j , θh,i) +
2C∗(f) + 2

√
log(T/δ)√

ndeploy
h−1,j m0

.

Moreover,

D̂PR(θh−1,j , θh,i) ≤ D̂PR(θh−1,j , θ
⋆
h,i) ≤ DPR(θh−1,j , θ

⋆
h,i) +

2C∗(f) + 2
√
log(T/δ)√

ndeploy
h−1,j m0
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where the first inequality is due to our choice of θh,i minimizing D̂PR(θh−1,j , θ) over θ ∈ Ph,i
and the second inequality holds because Eclean,δ holds. Lastly, by Lemma 12,

DPR(θh−1,j , θ
⋆
h,i) ≤ PR(θ⋆h,i) + (2

√
D)αLzε2

−αh.

Consequently, it follows that

PR(θh,i) ≤ PR(θ⋆h,i) + 2(2
√
D)αLzε2

−αh +
4C∗(f) + 4

√
log(T/δ)√

ndeploy
h−1,j m0

,

as required.

B.4 Proof of Theorem 11

Recall that ⊥h,p is defined as the depth of the deepest cell containing the performative
optimal solution θPO opened for at least 2p times until Algorithm 2 finishes opening cells
of depth h.

Lemma 18 Assume that the clean event Eclean,δ holds for some δ ∈ (0, 1), and let d denote
the ((2

√
D)αLzε, 2

−α, 1)-near-optimality dimension d((2
√
D)αLzε, 2

−α, 1). For any h ∈
[⌊hmax/2

p⌋] and p ∈ [0 : ⌊log2(hmax/h)⌋], if the following condition holds, then ⊥h,p = h
with ⊥0,p = 0.

2C∗(f) + 2
√
log(T/δ)√

2pm0
≤ (2
√
D)αLzε2

−αh and
hmax

h2p
≥ 2αhd.

Proof Let (h, p) with h ∈ [⌊hmax/2
p⌋] and p ∈ [0 : ⌊log2(hmax/h)⌋] satisfy the condition of

the lemma. Then we will argue by induction that ⊥h′,p = h′ for all h′ ∈ [h], thereby proving
that ⊥h,p = h.

Note that P0,1 = Θ contains θPO and P0,1 is opened hmax times with hmax ≥ 2pmax , so
⊥0,p = 0. Next, we assume that ⊥h′−1,p = h′ − 1 for some h′ ∈ [h]. Then it is sufficient to
show that ⊥h′,p = h′. Let i⋆h′−1 denote the index such that Ph′−1,i⋆

h′−1
is the cell containing

θPO at depth h′ − 1. By the induction hypothesis, cell Ph′−1,i⋆
h′−1

is opened at least 2p

times, i.e., nopen
h′−1,i⋆

h′−1
≥ 2p. This implies that nopen

h′−1,i⋆
h′−1
≥ 2p because ndeploy

h′−1,i⋆
h′−1
≥ 2p

′
=

nopen
h′−1,i⋆

h′−1
for some p′ according to the design of Algorithm 2. Let i⋆h′ denote the index such

that Ph′,i⋆
h′

is the cell containing θPO at depth h′. This means that Ph′,i⋆
h′

is a child cell of

Ph′−1,i⋆
h′−1

and ndeploy
h′,i⋆

h′
= nopen

h′−1,i⋆
h′−1
≥ 2p.

We open ⌊hmax/h
′2p⌋ cells from depth h′ cells with at least 2p deployments. Suppose for

a contradiction that cell Ph′,i⋆
h′

is not one of them. This implies that for each solution θh′,i

of the ⌊hmax/h
′2p⌋ cells with 2p deployments from depth h′, we have P̂R(θh′,i) ≤ P̂R(θh′,i⋆

h′
).

Moreover, such θh′,i satisfies the following.

PR(θh′,i)− (2
√
D)αLzε2

−αh′ ≤ PR(θh′,i)− (2
√
D)αLzε2

−αh

≤ PR(θh′,i)−
2C∗(f) + 2

√
log(T/δ)√

2pm0

(5)
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where the first inequality holds because h′ ≤ h and the second inequality holds due to the
condition of the lemma. Furthermore,

PR(θh′,i)−
2C∗(f) + 2

√
log(T/δ)√

2pm0
≤ PR(θh′,i)−

2C∗(f) + 2
√
log(T/δ)√

ndeploy
h′,i m0

≤ P̂R(θh′,i)

≤ P̂R(θh′,i⋆
h′
)

(6)

where the first inequality holds because ndeploy
h′,i ≥ 2p and the second inequality holds due to

the assumption that Eclean,δ holds. Combining (5) and (6), we deduce that

PR(θh′,i)− (2
√
D)αLzε2

−αh′ ≤ P̂R(θh′,i⋆
h′
).

Similarly, we can argue that

PR(θh′,i⋆
h′
) + (2

√
D)αLzε2

−αh′ ≥ P̂R(θh′,i⋆
h′
).

Consequently, it follows that

PR(θh′,i) ≤ PR(θh′,i⋆
h′
) + 2(2

√
D)αLzε2

−αh′

≤ inf
θ∈Θ

PR(θ) + 4(2
√
D)αLzε2

−αh′
+

4C∗(f) + 4
√
log(T/δ)√

2pm0

where the second inequality follows from Lemma 17, ndeploy
h′−1,i⋆

h′−1
≥ 2p, and θPO is contained

in cell Ph′,i⋆
h′
. Furthermore, by the condition of this lemma, it follows that

PR(θh′,i) ≤ PR(θPO) + 6(2
√
D)αLzε2

−αh′
.

In addition, since θPO is contained in cell Ph′,i⋆
h′
, Lemma 17 implies that

PR(θh′,i∗) ≤ PR(θPO) + 4(2
√
D)αLzε2

−αh′
.

This implies that

Nh(6(2
√
D)αLzε2

−αh′
) ≥

⌊
hmax

h′2p

⌋
+ 1 ≥

⌊
hmax

h2p

⌋
+ 1 ≥ 2αhd + 1 ≥ 2αh

′d + 1

where ⌊hmax/h
′2p⌋ comes from cells Ph′,i and 1 is due to cell Ph′,i⋆

h′
in the first inequality,

the second and the fourth inequalities hold because h′ ≤ h, and the third ineuality comes
from the condition of the lemma. This in turn implies that Nh(6(2

√
D)αLzε2

−αh′
) > 2αh

′d,
a contradiction. Therefore, it follows that ⊥h′,p = h′. Then the induction argument shows
that ⊥h,p = h, as required.
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Next, we prove Lemma 10 which shows that

PR(θT )− PR(θPO)

≤ 2(2
√
D)αLzε2

−α(⊥hmax,p+1) +
8C∗(f) + 8

√
log(T/δ)√

2pm0
+

4C∗(f) + 4
√
log(T/δ)√

hmaxm0
.

Proof [Proof of Lemma 10] Let p ∈ [0 : pmax], and let

(h, i) ∈ argmin
(h,i)

{
P̂R(θh,i) : h ∈ [hmax + 1],Ph,i ∈ Lh, ndeploy

h,i ≥ 2p
}
.

Recall that θT (p) is set to θh,i and that we obtain hmaxm0 new samples from D(θT (p))
from which we construct P̂R(θT (p)). Moreover, P̂R(θT ) ≤ P̂R(θT (p)). As Eclean,δ holds, it
follows that

PR(θT )−
2C∗(f) + 2

√
log(T/δ)√

hmaxm0
≤ P̂R(θT )

≤ P̂R(θT (p))

≤ PR(θT (p)) +
2C∗(f) + 2

√
log(T/δ)√

hmaxm0
.

(7)

Again, as Eclean,δ holds and θT (p) = θh,i,

PR(θT (p)) ≤ P̂R(θh,i) +
2C∗(f) + 2

√
log(T/δ)√

ndeploy
h,i m0

≤ P̂R(θh,i) +
2C∗(f) + 2

√
log(T/δ)√

2pm0
. (8)

Recall that ⊥hmax,p is the depth of the deepest cell containing θPO opened for at least 2p

times until Algorithm 2 finishes opening cells of depth hmax. Let (⊥hmax,p + 1, i⋆) denote
the deepest cell containing θPO and a solution deployed at least 2p times. By the choice of
(h, i), we have

P̂R(θh,i) ≤ P̂R(θ⊥hmax,p+1,i⋆) ≤ PR(θ⊥hmax,p+1,i⋆) +
2C∗(f) + 2

√
log(T/δ)√

2pm0
(9)

where the second inequality holds because Eclean,δ holds and ndeploy
⊥hmax,p+1,i⋆ ≥ 2p. Moreover,

since the parent cell of P⊥hmax,p+1,i⋆ is opened at least 2p times, it means that the parent
cell contains a solution deployed at least 2p times. Then by Lemma 17, it follows that

PR(θ⊥hmax,p+1,i⋆) ≤ PR(θPO) + 2(2
√
D)αLzε2

−α(⊥hmax,p+1) +
4C∗(f) + 4

√
log(T/δ)√

2pm0
. (10)

In summary, we deduce from (7) – (10) that

PR(θT )− PR(θPO)

≤ 2(2
√
D)αLzε2

−α(⊥hmax,p+1) +
8C∗(f) + 8

√
log(T/δ)√

2pm0
+

4C∗(f) + 4
√
log(T/δ)√

hmaxm0
,
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as required.

Note that the regret bound given by Lemma 10 holds for any p ∈ [0 : pmax]. Hence, to
prove an upper bound on the regret PR(θT )− PR(θPO), we need to choose an appropriate
p that achieves a small value of

2(2
√
D)αLzε2

−α(⊥hmax,p+1) +
8C∗(f) + 8

√
log(T/δ)√

2pm0
.

As in Bartlett et al. (2019), the strategy is to choose p under which there is a strong lower
bound on ⊥hmax,p + 1. In our case, however, we have the additional term Õ(1/

√
2p). In

fact, we will argue that the choice of p, under which ⊥hmax,p + 1 is large, also makes the
additional term small.

For simplicity, we use notations ρ, ν, and B defined as

ρ = 2−α, ν = (2
√
D)αLzε, B =

2
√
2
(
C∗(f) +

√
log(T/δ)

)
√
m0

.

With these notations, Lemma 18 can be restated as follows.

Lemma 19 Assume that Eclean,δ holds for some δ ∈ (0, 1). Let d denote the (ν, ρ, 1)-near-
optimality dimension d(ν, ρ, 1). For any h ∈ [⌊hmax/2

p⌋] and p ∈ [0 : ⌊log2(hmax/h)⌋], if the
following condition holds, then ⊥h,p = h.

B√
2p+1

≤ νρh and
hmax

h2p
≥ ρ−dh.

Next, we define h̃ and p̃ as the numbers satisfying the following condition.

hmaxν
2ρ2h̃

h̃B2
= ρ−h̃d and

B√
2p̃

= νρh̃.

Then by definition of the Lambert W function, we have

h̃ =
1

(d+ 2) log(1/ρ)
W

(
hmaxν

2(d+ 2) log(1/ρ)

B2

)
.

Here, B ≥ Lzε · 2−αh̃ holds if and only if 2p̃ ≥ 1. Hence, the case when 2p̃ ≥ 1 corresponds
to the high-noise regime and the setting where 2p̃ < 1 corresponds to the low-noise regime.
Next, as in Bartlett et al. (2019), we define ḧ and p̈ as follows.

• (High-noise regime) Set ḧ = h̃ and p̈ = p̃.

• (Low-noise regime) Set ḧ as ḧ = h̄ that satisfies hmax/h̄ = ρ−dh̄ and p̈ = 0.

Note that for this choice of ḧ and p̈, we have hmax/ḧ2
p̈ = ρ−dḧ. under both regimes.

Moreover, with Lemma 19, we may argue that the following statement holds.
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Lemma 20 (Bartlett et al. (2019)) Assume that Eclean,δ holds for some δ ∈ (0, 1). Let
d denote the (ν, ρ, 1)-near-optimality dimension d(ν, ρ, 1). Then ḧ ≤ h̃ and

⊥hmax,⌊p̈⌋ + 1 ≥ ⌊ḧ⌋+ 1 ≥ ḧ

under both the high-noise and low-noise regimes.

Now we are ready to complete the proof of Theorem 11.
Proof [Proof of Theorem 11] Under Eclean,δ, Lemmas 10 and 20 imply that

PR(θT )− PR(θPO) ≤ 2(2
√
D)αLzε2

−αḧ +
8C∗(f) + 8

√
log(T/δ)√

2⌊p̈⌋m0

+
4C∗(f) + 4

√
log(T/δ)√

hmaxm0

holds.
Let us first consider the low-noise regime. Since 2p̃ < 1, we know that B < νρh̃. By

Lemma 20, we have ḧ ≤ h̃, which implies that B < νρh̃ ≤ νρḧ. Then as p̈ = 0 under the
low-noise regime, it follows that

PR(θT )− PR(θPO) ≤ (2 + 2
√
2)(2
√
D)αLzε2

−αḧ +
4C∗(f) + 4

√
log(T/δ)√

hmaxm0
.

Moreover, if hmax ≥ 1, then as B ≤ νρḧ,

PR(θT )− PR(θPO) ≤ (2 + 3
√
2)(2
√
D)αLzε2

−αḧ.

When d = 0, we have ḧ = hmax. When d > 0, we have

ḧ =
1

αd log 2
W (hmaxαd log 2) .

For the high-noise regime, we have ḧ = h̃ and

8C∗(f) + 8
√
log(T/δ)√

2⌊p̈⌋m0

=
4B√
2⌊p̈⌋+1

≤ 4B√
2p̈

= 4νρh̃.

Therefore, under the high-noise regime, we have

PR(θT )− PR(θPO) ≤ 6(2
√
D)αLzε2

−αh̃ +
4C∗(f) + 4

√
log(T/δ)√

hmaxm0
.

Recall that h̃ is given by

h̃ =
1

α(d+ 2) log 2
W

(
(4D)αα(d+ 2) log 2

8(C∗(f) + 4
√

log(T/δ))2
L2
zε

2m0hmax

)
.

Lastly, Hoorfar and Hassani (2008) showed that if x ≥ e, then W (x) ≥ log(x/ log(x)).
Hence, if d > 0 and hmaxαd log 2 ≥ e under the low-noise regime, then θ satisfies

PR(θ)− PR(θPO) ≤ (2 + 3
√
2)(2
√
D)αLzε

(
hmaxαd log 2

log(hmaxαd log 2)

)− 1
d

.
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Moreover, if B2hmaxν
2α(d+ 2) log 2 ≥ e, then

PR(θ)− PR(θPO)

≤ 6(2
√
D)αLzε

(
hmaxν

2α(d+ 2) log 2/B2

log(hmaxν2α(d+ 2) log 2/B2)

)− 1
d+2

+
4C∗(f) + 4

√
log(T/δ)√

hmaxm0
,

as required.
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