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Abstract

This paper proposes a computationally tractable algorithm for learning infinite-horizon average-
reward linear mixture Markov decision processes (MDPs) under the Bellman optimality condition.
Our algorithm for linear mixture MDPs achieves a nearly minimax optimal regret upper bound of
Õ(d

√
sp(v∗)T ) over T time steps where sp(v∗) is the span of the optimal bias function v∗ and d

is the dimension of the feature mapping. Our algorithm applies the recently developed technique
of running value iteration on a discounted-reward MDP approximation with clipping by the span.
We prove that the value iteration procedure, even with the clipping operation, converges. Moreover,
we show that the associated variance term due to random transitions can be bounded even under
clipping. Combined with the weighted ridge regression-based parameter estimation scheme, this
leads to the nearly minimax optimal regret guarantee.

1 Introduction

Reinforcement learning (RL) with function approximation has achieved remarkable success in a wide range of areas,
including video games (Mnih et al., 2015), Go (Silver et al., 2017), robotics (Kober et al., 2013), and autonomous driv-
ing (Yurtsever et al., 2020). Such empirical progress has stimulated endeavors to expand our theoretical understanding
of RL with function approximation.

As a first step toward establishing theoretical foundations, linear function approximation frameworks have received
significant attention. The works on linear function approximation can be categorized based on how linearity is assumed
on the structure of the underlying Markov decision process (MDP). There are largely four settings: MDPs with a low
Bellman rank (Jiang et al., 2017), linear MDPs (Yang and Wang, 2019; Jin et al., 2020), linear mixture MDPs (Jia
et al., 2020; Ayoub et al., 2020; Zhou et al., 2021c), and MDPs with a low inherent Bellman error (Zanette et al.,
2020b).

Among them, notable progress has been made for linear mixture MDPs where the underlying transition kernel and the
reward function are assumed to be parameterized as a linear function of some given feature mappings over state-action
pairs or state-action-state triplets. For the finite-horizon setting, Zhou et al. (2021a) developed a nearly minimax
optimal algorithm. For the infinite-horizon discounted-reward case, Zhou et al. (2021c) established a regret lower
bound. Shortly after this, Zhou et al. (2021b) announced an algorithm with a regret upper bound matching the lower
bound up to logarithmic factors. For the infinite-horizon average-reward regime, Wu et al. (2022) showed a regret lower
bound of Ω(d

√
DT ) from a communicating MDP instance with diameter D where d is the dimension of the feature

map and T is the horizon. Moreover, they designed an algorithm that achieves a regret upper bound of Õ(d
√
DT ),

establishing near minimax optimality for the class of communicating MDPs.

For the infinite-horizon average-reward setting, however, the class of communicating MDPs is perhaps not the most
general set of MDPs for which a learning algorithm can guarantee a sublinear regret (Bartlett and Tewari, 2009).
Although the diameter captures the number of steps needed to recover from a bad state to a good state, the actual
regret incurred while recovering is better represented by the span sp(v∗) of the optimal bias function v∗ (Fruit et al.,
2018). While the diameter is an upper bound on the span, it can be arbitrarily larger than the span, and in fact, a weakly
communicating MDP can have a finite span but an infinite diameter (Bartlett and Tewari, 2009).



The recent framework of He et al. (2024), LOOP, can be applied to infinite-horizon average-reward linear mixture
MDPs of bounded span. Although LOOP guarantees a sublinear regret upper bound that depends on the span, LOOP
is hardly practical as it relies on solving a complex constrained optimization problem. This motivates the following
question.

Does there exist a computationally efficient, nearly minimax optimal algorithm for learning infinite-horizon
average-reward linear mixture MDPs of bounded span?

This paper answers the question affirmatively. Let us summarize our contributions in Table 1 and as follows.

Table 1: Summary of Our Results on Regret Upper and Lower Bounds for Learning Linear Mixture MDPs

Setting Regret Upper Bound Regret Lower Bound

Communicating (bounded diameter) Õ
(
d
√
DT

)
(Wu et al., 2022) Ω

(
d
√
DT

)
(Wu et al., 2022)

Bellman optimality (bounded span) Õ
(
d
√

sp(v∗)T
)

(Theorem 1) Ω
(
d
√

sp(v∗)T
)

(Theorem 2)

• We propose a computationally efficient algorithm, upper-confidence linear kernel reinforcement learning with
clipping (UCLK-C; Algorithm 1) that achieves a regret upper bound of Õ(d

√
sp(v∗)T ).

• We deduce a regret lower bound of Ω(d
√

sp(v∗)T ) by refining the regret lower bound analysis of Wu et al.
(2022). This shows that UCLK-C is nearly minimax optimal.

• UCLK-C runs with a novel value iteration scheme by applying the clipping operation within discounted ex-
tended value iteration. The clipping operation due to Hong et al. (2024) is for controlling the span of in-
termediate value functions, which is crucial to provide a bounded regret for MDPs of bounded span. The
clipping operation is much simpler to implement than constrained optimization-based frameworks to control
the span. To run discounted extended value iteration, we approximate a given average-reward MDP by a
discounted-reward MDP, as in UCLK due to Zhou et al. (2021c).

• We prove that for linear mixture MDPs, the discounted extended value iteration converges even with clipping.
Moreover, we show that the associated variance term due to random transitions can be bounded even under the
clipping operation. Combined with the variance-aware weighted ridge regression-based parameter estimation
scheme due to Wu et al. (2022), we deduce our nearly minimax optimal regret upper bound.

The idea of approximating an average-reward MDP by a discounted-reward MDP has been adopted for the tabular
case (Wei et al., 2020; Zhang and Xie, 2023) and used for learning linear MDPs (Hong et al., 2024). Clipping an
optimistic value function estimator to control its size is already a common practice when designing an algorithm for
finite-horizon and infinite-horizon discounted-reward MDPs. However, the clipping operation in our algorithm sets
the threshold in a different way to control the span of value functions, not their sizes, and it was first introduced by
Hong et al. (2024). For linear MDPs, due to the clipping operation, convergence of value iteration is not guaranteed.
In contrast, for linear mixture MDPs, we establish convergence of value iteration even with clipping.

2 Related Work

Reinforcement Learning with Linear Function Approximation Recently, there has been remarkable progress in
reinforcement learning frameworks with linear function approximation (Jiang et al., 2017; Yang and Wang, 2019,
2020; Jin et al., 2020; Wang et al., 2021; Modi et al., 2020; Dann et al., 2018; Du et al., 2021; Sun et al., 2019; Zanette
et al., 2020a,b; Cai et al., 2020; Jia et al., 2020; Ayoub et al., 2020; Weisz et al., 2021; Zhou et al., 2021c,a; He et al.,
2021; Zhou and Gu, 2022; Hu et al., 2022; He et al., 2023; Agarwal et al., 2023; Hong et al., 2024). These works
develop frameworks for MDP classes with certain linear structures. Among them, the most relevant to this paper
are linear and linear mixture MDPs. Linear and linear mixture MDPs assume that the transition probability and the
reward function are linear in some feature mappings over state-action pairs or state-action-state triplets. Although
the two classes are closely related, one cannot be covered by the other (Zhou et al., 2021c). For learning infinite-
horizon average-reward linear MDPs, Wei et al. (2021) developed several algorithms, including FOPO. FOPO achieves
the best-known regret upper bound, but it needs to solve a fixed-point equation at each iteration, making the algorithm
intractable. Recently, Hong et al. (2024) proposed a provably efficient algorithm that achieves the best-known regret
upper bound for the setting. For learning infinite-horizon average-reward linear mixture MDPs, Wu et al. (2022)
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developed an algorithm that is shown to be minimax optimal for the communicating case. He et al. (2024) proposed
an algorithm for RL with general function approximation, LOOP, incorporating linear and linear mixture MDPs as
subclasses.

Infinite-Horizon Average-Reward Reinforcement Learning The seminal work by Auer et al. (2008) pioneered
algorithmic frameworks for model-based online learning of MDPs. They proved a regret lower bound of Ω(

√
DSAT )

where S is the number of states and A is the number of actions. Then they provided UCRL2 that runs with constructing
some optimistic sets for estimating the transition probability and guarantees a regret bound of Õ(DS

√
AT ). Bartlett

and Tewari (2009) considered the class of MDPs of bounded span, for which they proposed an algorithm that achieves
a regret upper bound of Õ(sp(v∗)S

√
AT ). Since then, there has been a long line of work toward closing the gap

between regret upper and lower bounds (Filippi et al., 2010; Talebi and Maillard, 2018; Fruit et al., 2018, 2020; Bourel
et al., 2020; Zhang and Ji, 2019; Agrawal and Jia, 2017; Ouyang et al., 2017; Abbasi-Yadkori et al., 2019; Wei et al.,
2021; Zhang and Xie, 2023; Boone and Zhang, 2024). In particular, Fruit et al. (2018) and Zhang and Ji (2019) refined
the regret lower bound to Ω(

√
sp(v∗)SAT ). The first result with a regret upper bound matching the lower bound

is due to Zhang and Ji (2019), but their algorithm is not tractable. Recently, Boone and Zhang (2024) developed a
tractable algorithm that guarantees a regret bound of Õ(

√
sp(v∗)SAT ).

3 Preliminaries

Notations Given a vector x ∈ Rd and a positive semidefinite matrix A ∈ Rd×d, ∥x∥2 is the ℓ2-norm, ∥x∥A =√
x⊤Ax, and ∥A∥2 is the spectral norm. For any positive integers m,n with m < n, [n] and [m : n] denote {1, . . . , n}

and {m, . . . , n}, respectively.

Infinite-Horizon Average-Reward MDP We consider an MDP given by M = (S,A,P, r) where S is the state
space, A is the action space, P(· | s, a) specifies the transition probability function for state s with taking ac-
tion a, and r(s, a) ∈ [0, 1] is the reward from action a at state s. A (stochastic) stationary policy is given as a
mapping π : S → ∆(A) where ∆(A) is the set of probability measures on A, and we use notation π(a | s)
for the probability of taking action a at state s under policy π. When π is a deterministic policy, we write that
a = π(s) with abuse of notation where a is the action with π(a | s) = 1. At each time step t, an algorithm
takes action at at given state st, after which it observes the next state st+1 drawn from distribution P(· | st, at).
Then the cumulative reward over T steps is

∑T
t=1 r(st, at). Then the (long-term) average reward is given by

lim infT→∞ E[
∑T

t=1 r(st, at)]/T , which can be maximized by a deterministic stationary policy (See Puterman, 2014).
We denote by Jπ(s) = lim infT→∞ E[

∑T
t=1 r(st, at) | s1 = s]/T the average reward of a stationary policy π starting

from initial state s.

In this paper, we focus on the class of MDPs satisfying the following form of Bellman optimality condition. We
assume that there exist J∗ ∈ R, v∗ : S → R, and q∗ : S ×A → R such that for all (s, a) ∈ S ×A,

J∗ + q∗(s, a) = r(s, a) + Es′∼P(·|s,a) [v
∗(s′)] , v∗(s) = max

a∈A
q∗(s, a). (1)

Under the Bellman optimality condition, the optimal average reward J∗(s) := maxπ J
π(s) is invariant with the initial

state s, and J∗(s) = J∗ for any s ∈ S (Bartlett and Tewari, 2009). Moreover, the class of weakly communicating
MDPs satisfies the condition (See Puterman, 2014). There indeed exist other general classes of MDPs with which
the condition holds (Hernandez-Lerma, 2012, Section 3.3). For any function h : S → R, we define its span as
sp(h) := maxs∈S h(s) − mins∈S h(s). Then following the literature on infinite-horizon average-reward RL (Auer
et al., 2008), we consider the regret function Regret(T ) = T · J∗ −

∑T
t=1 r(st, at) to assess the performance of an

algorithm.

Discounted-Reward MDP We also consider the discounted cumulative reward of a stationary policy π given by
V π(s) = E[

∑∞
t=1 γ

t−1r(st, at) | s1 = s] where s is the initial state and γ ∈ (0, 1) is a discount factor. Similarly, we
consider Qπ(s, a) = E[

∑∞
t=1 γ

t−1r(st, at) | (s1, a1) = (s, a)]. Then we define the optimal value function V ∗ and
the optimal action-value function Q∗ as V ∗(s) = maxπ V

π(s) and Q∗(s, a) = maxπ Q
π(s, a) for (s, a) ∈ S ×A. It

is known that there exists a deterministic stationary policy that gives rise to V ∗ and Q∗ (See Puterman, 2014; Agarwal
et al., 2021). Moreover, V ∗ and Q∗ satisfy the following Bellman optimality equation.

Q∗(s, a) = r(s, a) + γEs′∼P(·|s,a) [V
∗(s′)] , V ∗(s) = max

a∈A
Q∗(s, a). (2)
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Our approach is to approximate an average-reward MDP by a discounted-reward MDP. In fact, as the discount fac-
tor gets close to 1, the discounted cumulative reward converges to the average reward for a stationary policy (See
Puterman, 2014).

Linear Mixture MDPs In this work, we focus on linear mixture MDPs, defined formally as follows.
Assumption A. (Linear Mixture MDP, Zhou et al., 2021a; Wu et al., 2022) There is a known feature map ϕ : S ×
A× S → Rd such that for any (s, a, s′) ∈ S ×A× S ,

P(s′ | s, a) = ⟨ϕ(s, a, s′), θ∗⟩

where θ∗ ∈ Rd is an unknown vector.

We assume that the reward function is deterministic and known to the decision-maker, but our results easily extend to
the setting where the reward function is given by r(s, a) = ⟨φ(s, a), θ∗⟩ for some feature map φ : S × A → Rd. For
any function F : S → R, we use the following shorthand notations.

[PF ](s, a) = Es′∼P(·|s,a)[F (s′)],

[VF ](s, a) = [PF 2](s, a)− ([PF ](s, a))2

Defining ϕF (s, a) =
∫
s′
ϕ(s, a, s′)F (s′)ds′, we have

⟨ϕF (s, a), θ
∗⟩ =

∫
⟨ϕ(s, a, s′), θ∗⟩F (s′)ds′ = [PF ](s, a).

Therefore, we also have
[VF ](s, a) = ⟨ϕF 2(s, a), θ∗⟩ − ⟨ϕF (s, a), θ

∗⟩2 .
Following Wu et al. (2022), we assume that the scales of the parameters are bounded as follows.
Assumption B. θ∗ satisfies ∥θ∗∥2 ≤ Bθ for some Bθ ∈ R. Moreover, for any H > 0, F : S → [0, H], and
(s, a) ∈ S ×A, it holds that ∥ϕF (s, a)∥2 ≤ H .

4 The Proposed Algorithm

In this section, we present our algorithm, UCLK-C, described in Algorithm 1. As common in algorithms for learning
infinite-horizon average-reward MDPs such as UCRL2 (Auer et al., 2008) and UCRL2-VTR (Wu et al., 2022), UCLK-C
also proceeds with episodes. Following UCRL2-VTR, when to start the next episode is determined based on the Gram
matrix (line 1). Each episode of UCLK-C consists of two phases, the planning phase (lines 1–1) and the execution phase
(lines 1–1). During the planning phase, we run extended value iteration for a discounted MDP with estimated param-
eters. Then, based on value functions deduced from the planning phase, we take and execute a greedy deterministic
(non-stationary) policy for the execution phase. What follows provides a more detailed discussion of the components
of UCLK-C.

Discounted Value Iteration As in Hong et al. (2024), we apply value iteration on a discounted-reward approxima-
tion of the underlying MDP. For each episode k, we take a confidence ellipsoid Ck (line 1) over which we run extended
value iteration (line 1). We make sure that any θ ∈ Ck induces a probability distribution, i.e. Ck ⊆ B where

B =

{
θ ∈ Rd :

〈∫
ϕ(s, a, s′)ds′, θ

〉
= 1, ⟨ϕ(s, a, s′), θ⟩ ≥ 0 ∀(s, a, s′)

}
.

As a result, we get that Q(n)(s, a) ≤ (1 − γ)−1 for any (s, a) ∈ S × A and n. Note that we apply multiple rounds
of value iteration. We will show that even with the clipping operation (line 1), the value iteration procedure stated in
lines 1–1 converges.

Clipping Operation In each round of value iteration, UCLK-C applies the clipping operation stated in line 1. Note
that the value function Ṽ (n) from line 1 does not necessarily have a bounded span. After the clipping operation, it is
clear that the span of V (n) from line 1 becomes bounded above as sp(V (n)) ≤ H . As a result, the re-centering step in
line 1 guarantees that Wk(s) ∈ [0, H] for any s ∈ S, which is crucial to parameterize estimation errors as a function
of H , not (1 − γ)−1 which is set as large as O(

√
T ). Note that the Gram matrix update steps (lines 1–1) are with

respect to Wk, not Vk. We choose any upper bound H on 2 · sp(v∗) where v∗ is the optimal bias function from the
Bellman optimality condition (1).
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Algorithm 1 Upper-Confidence Linear Kernel Reinforcement Learning with Clipping (UCLK-C)

1: Input: upper bound H of 2 · sp(v∗), feature map ϕ : S × A × S → Rd, confidence level δ ∈ (0, 1), discount
factor γ ∈ [0, 1), number of rounds N , and parameters λ,Bθ

2: Initialize: t← 1, Σ̂1, Σ̃1 ← λId, b̂1, b̃1, θ̂1, θ̃1 ← 0, and observe the initial state s1 ∈ S
3: for episodes k = 1, 2, . . . , do
4: Set tk = t and Ck = Ĉtk given in (3)
5: Initialize Q(0)(·, ·)← (1− γ)−1 and V (0)(·)← (1− γ)−1

6: for rounds n = 1, 2, . . . , N do
7: Set Q(n)(·, ·)← r(·, ·) + γ ·maxθ∈Ck

⟨ϕV (n−1)(·, ·), θ⟩
8: Set Ṽ (n)(·)← maxa∈A Q(n)(·, a)
9: Set V (n)(·)← min{Ṽ (n)(·),mins′∈S Ṽ (n)(s′) +H}

10: end for
11: Set Qk(·, ·)← Q(N)(·, ·) and Vk(·)← V (N)(·)
12: Set Wk(·)← Vk(·)−mins′∈S Vk(s

′)
13: Take a deterministic policy πk given by πk(·) ∈ argmaxa∈A Qk(·, a)
14: while det(Σ̂t) ≤ 2 det(Σ̂tk) do
15: Take action at ← πk(st), receive reward r(st, at) and next state st+1 ∼ P(·|st, at)
16: Set σ̄t ←

√
max

{
H2/d, [V̄tWk](st, at) + Et

}
where [V̄tWk](st, at) and Et are given as in (4) and (5)

17: Set Σ̂t+1 ← Σ̂t + σ̄−2
t ϕWk

(st, at)ϕWk
(st, at)

⊤ and b̂t+1 ← b̂t + σ̄−2
t Wk(st+1)ϕWk

(st, at)

18: Set Σ̃t+1 ← Σ̃t + ϕW 2
k
(st, at)ϕW 2

k
(st, at)

⊤ and b̃t+1 ← b̃t +W 2
k (st+1)ϕW 2

k
(st, at)

19: Set θ̂t+1 ← Σ̂−1
t+1b̂t+1 and θ̃t+1 ← Σ̃−1

t+1b̃t+1

20: Set t← t+ 1
21: end while
22: end for

Variance-Aware Ridge Regression-Based Parameter Estimation We closely follow the Bernstein inequality-
based estimation scheme of Wu et al. (2022). The idea is to build confidence ellipsoids for θ∗ based on a Bernstein-type
concentration inequality for linear bandits. To be more precise, we apply the following lemma for vector-valued mar-
tingales.
Lemma 4.1. (Theorem 4.1, Zhou et al., 2021a) Let {Gt}∞t=1 be a filtration, {xt, ηt}t≥1 a stochastic process such that
xt ∈ Rd is Gt-measurable while ηt ∈ R is Gt+1-measurable. For t ≥ 1, let yt = ⟨xt, µ

∗⟩ + ηt where |ηt| ≤ R,
E[ηt | Gt] = 0, E[η2t | Gt] ≤ σ2, and ∥xt∥2 ≤ L for some fixed R, L, σ, λ > 0 and µ∗ ∈ Rd. Then, for any 0 < δ < 1,
it holds with probability at least 1− δ that for every t ≥ 1,

∥µt − µ∗∥Zt
≤ βt +

√
λ∥µ∗∥2

where βt = 8σ
√

d log(1 + tL2/(dλ)) log(4t2/δ) + 4R log(4t2/δ), µt = Z−1
t bt, Zt = λId +

∑t
i=1 xix

⊤
i , and

bt =
∑t

i=1 yixi.

Note that θ̂t+1 in line 1 corresponds to µt in Lemma 4.1 by setting (xj , yj) = (σ̄−1
j ϕWi(sj , aj), σ̄

−1
j Wi(sj+1)) for

j ∈ [ti : ti+1 − 1] and i ∈ [k]. Then θ̂tk is the solution of the following weighted ridge regression.

min
θ∈Rd

λ∥θ∥22 +
k−1∑
i=1

ti+1−1∑
j=ti

(Wi(sj+1)− ⟨ϕWi
(sj , aj), θ⟩)2

σ̄2
j

.

Here, σ̄2
j is an estimator of the (conditional) variance of Wi(sj+1), given by [VWi](sj , aj).

We will choose the value of σ̄t (line 1) for t ∈ [tk, tk+1 − 1] so that |ηt| ≤
√
d, E[η2t | Gt] ≤ 1, and |xt| ≤

√
d, where

ηt = yt − ⟨xt, θ
∗⟩ and Gt = σ(s1, . . . , st) is the σ-algebra generated by s1, . . . , st. Then, based on Lemma 4.1, we

may construct
Ĉt =

{
θ ∈ B : ∥θ − θ̂t∥Σ̂t

≤ β̂t

}
(3)

where we set

β̂t = 8
√

d log(1 + t/λ) log(4t2/δ) + 4
√
d log(4t2/δ) +

√
λBθ.
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We make sure that σ̄t is strictly positive. Moreover, to guarantee E[η2t | Gt] ≤ 1, we take the right quantity for σ̄t so
that σ̄2

t is an upper bound on the variance term given by

[VWk](st, at) = ⟨ϕW 2
k
(st, at), θ

∗⟩ − ⟨ϕWk
(st, at), θ

∗⟩2.

To estimate this, we first take [V̄tWk](st, at) given by

[V̄tWk](st, at) =
[
⟨ϕW 2

k
(st, at), θ̃t⟩

]
[0,H2]

−
[
⟨ϕWk

(st, at), θ̂t⟩
]2
[0,H]

(4)

where [x][a,b] denotes the projection of x onto the interval [a, b] and θ̃t (line 1) corresponds to µt−1 in Lemma 4.1 by
setting (xj , yj) = (ϕW 2

i
(sj , aj),W

2
i (sj+1)) for j ∈ [ti : ti+1 − 1] and i ∈ [k]. Note that θ̃t is the solution of the

(unweighted) ridge regression problem with contexts ϕW 2
i
(sj , aj) and targets W 2

i (sj+1) for j ∈ [ti : ti+1 − 1] and
i ∈ [k].

The last ingredient is to take an upper bound Et on the error term |[VWk](st, at)− [V̄tWk](st, at)|. We take

Et = min
{
H2, 2Hβ̌t∥ϕWk

(st, at)∥Σ̂−1
t

}
+min

{
H2, β̃t∥ϕW 2

k
(st, at)∥Σ̃−1

t

}
(5)

where we set

β̌t = 8d
√
log(1 + t/λ) log(4t2/δ) + 4

√
d log(4t2/δ) +

√
λBθ,

β̃t = 8H2
√
d log(1 + tH2/(dλ)) log(4t2/δ) + 4H2 log(4t2/δ) +

√
λBθ.

Here, we may observe from Lemma 4.1 that ∥θ∗ − θ̂t∥Σ̂t
≤ β̌t and ∥θ∗ − θ̃t∥Σ̂t

≤ β̃t with high probability, based on
which we prove that Et provides an upper bound on the error term.

Finally, we set the value of σ̄t as

σ̄t =
√
max

{
H2/d, [V̄tWk](st, at) + Et

}
.

Note that σ̄t is well-defined because the term inside the square root is strictly positive. Moreover, σ̄2
t is greater than

or equal to [V̄tWk](st, at) + Et which is an upper bound on the variance term [VWk](st, at). To formalize this, we
prove the following lemma.
Lemma 4.2. With probability at least 1− 3δ, it holds that for every t ∈ [T ],

|[VWk](st, at)− [V̄tWk](st, at)| ≤ Et, θ∗ ∈ Ĉt.

5 Regret Analysis of UCLK-C

Let us state the following regret bound of UCLK-C for linear mixture MDPs.

Theorem 1. Set H ≥ 2 · sp(v∗), γ = 1−
√
d/
√
HT , N ≥

√
HT/d log(

√
T/d
√
H), and λ = 1/B2

θ . Then UCLK-C
guarantees with probability at least 1− 5δ that for any linear mixture MDP with any initial state,

Regret(T ) = Õ
(
d
√
HT +H

√
dT + d7/4HT 1/4

)
where the Õ(·) hides logarithmic factors in THBθ/δ.

By taking H = 2 · sp(v∗), as a corollary of Theorem 1, we deduce that

Regret(T ) = Õ
(
d
√
sp(v∗)T

)
where Õ(·) hides logarithmic factors in T sp(v∗)Bθ/δ. The rest of this section gives a proof overview of Theorem 1.

Let us start by establishing convergence of the discounted extended value iteration procedure with clipping. For
episode k, we consider the value functions Ṽ (n) and V (n) for n ∈ [N ] (lines 1–1 of Algorithm 1). Recall that V (n) is
obtained from Ṽ (n) after applying the clipping operation. It turns out that the clipping operation is a contraction map.
Lemma 5.1. For any n ∈ [N ], it holds that

max
s∈S

(V (n−1)(s)− V (n)(s)) ≤ max
s∈S

(Ṽ (n−1)(s)− Ṽ (n)(s)).
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Recall that Qk is the action-value function for the kth episode and that Vk denotes the value function for the kth
episode, obtained from clipping Ṽk with Ṽk(s) = maxa∈A Qk(s, a) for s ∈ S (line 1 of Algorithm 1). Based
on Lemma 5.1, we prove the following lemma.

Lemma 5.2. Suppose that θ∗ ∈ Ĉt for t ∈ [T ] where Ct is defined as in (3). Then for each episode k and tk ≤ t <
tk+1 − 1, it holds that

Qk(st, at) ≤ r(st, at) + γmax
θ∈Ck

⟨ϕVk
(st, at), θ⟩+ γN .

With Lemma 5.2, we may provide a decomposition of the regret function as follows. Let KT denote the total number
of distinct episodes over the horizon of T time steps. For simplicity, we assume that the last time step of the last
episode and that time step T + 1 is the beginning of the (KT + 1)th episode, i.e., tKT+1 = T + 1. Then it follows
from Lemma 5.2 that

Regret(T ) = T · J∗ −
T∑

t=1

r(st, at)

≤ TγN +

KT∑
k=1

tk+1−1∑
t=tk

(J∗ − (1− γ)Vk(st+1))︸ ︷︷ ︸
I1

+

KT∑
k=1

tk+1−1∑
t=tk

(Vk(st+1)−Qk(st, at))︸ ︷︷ ︸
I2

+ γ

KT∑
k=1

tk+1−1∑
t=tk

(⟨ϕVk
(st, at), θ

∗⟩ − Vk(st+1))︸ ︷︷ ︸
I3

+ γ

KT∑
k=1

tk+1−1∑
t=tk

max
θ∈Ck

⟨ϕVk
(st, at), θ − θ∗⟩︸ ︷︷ ︸

I4

.

Regret Term I1 Recall that V ∗ and Q∗ are the optimal value function and the optimal action-value function for
the discounted-reward setting with discount factor γ. The following lemma proves that Vk and Qk are optimistic
estimators of V ∗ and Q∗, respectively.

Lemma 5.3. Suppose that θ∗ ∈ Ĉt for t ∈ [T ] where Ĉt is defined as in (3). Then for each episode k, 1/(1 − γ) ≥
Vk(s) ≥ V ∗(s) and 1/(1− γ) ≥ Qk(s, a) ≥ Q∗(s, a).

Lemma 5.3 implies that J∗ − (1 − γ)Vk(st+1) ≤ J∗ − (1 − γ)V ∗(st+1). This can be further bounded above based
on the following lemma.
Lemma 5.4. (Lemma 2, Wei et al., 2020) Let J∗ and v∗ be the optimal average reward and the optimal bias function
given in (1), and let V ∗ be the optimal discounted value function given in (2) with discount factor γ ∈ [0, 1). Then it
holds that

max
s∈S
|J∗ − (1− γ)V ∗(s)| ≤ (1− γ)sp(v∗), sp(V ∗) ≤ 2 · sp(v∗).

Lemma 5.4 offers a tool to bridge an infinite-horizon average-reward MDP and its discounted-reward MDP approxi-
mation. In particular, we deduce that I1 ≤ T (1− γ)sp(v∗) ≤ d

√
sp(v∗)T .

Regret Term I2 Note that Vk(st+1) ≤ Ṽk(st+1) = Qk(st+1, at+1) for t ∈ [tk : tk+1 − 2], which leads to a
telescoping structure. To be precise, we have

I2 ≤
KT∑
k=1

tk+1−2∑
t=tk

(Qk(st+1, at+1)−Qk(st, at)) +

KT∑
k=1

(
1

1− γ
−Qk(stk+1−1, atk+1−1)

)

= −
KT∑
k=1

Qk(stk , atk) +
KT

1− γ
.

The following lemma gives an upper bound on the number of episodes KT .
Lemma 5.5. If λ = 1/B2

θ , then K(T ) ≤ 1 + d log(1 + TH2B2
θ/d).

Then it follows form Lemma 5.5 that I2 = Õ(d
√
HT ) where Õ(·) hides a logarithmic factor in THBθ.
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Regret Term I3 We first observe that
⟨ϕVk

(st, at), θ
∗⟩ − min

s′∈S
Vk(s

′) = ⟨ϕWk
(st, at), θ

∗⟩

since ⟨ϕVk
(st, at), θ

∗⟩ = [PVk](st, at). This implies that

I3 = γ

KT∑
k=1

tk+1−1∑
t=tk

(⟨ϕWk
(st, at), θ

∗⟩ −Wk(st+1))︸ ︷︷ ︸
ηt

.

Then {ηt}Tt=1 is a martingale difference sequence. Moreover, |ηt| ≤ H as Wk(s) ∈ [0, H] for any s ∈ S. Therefore,
applying the Azuma-Hoeffding inequality, we deduce the following upper bound on I3.
Lemma 5.6. It holds with probability at least 1− δ that I3 ≤ H

√
2T log(1/δ).

Regret Term I4 Let us sketch the idea of how the term I4 can be bounded while a more rigorous proof is given in the
appendix. Any θ ∈ Ck induces a probability distribution, which implies that ⟨ϕVk

(st, at), θ− θ∗⟩ = ⟨ϕWk
(st, at), θ−

θ∗⟩ ∈ [−H,H]. Moreover, assuming that θ∗ ∈ Ck based on Lemma 4.2,

⟨ϕWk
(st, at), θ − θ∗⟩ ≤ ∥ϕWk

(st, at)∥Σ̂−1
t

(
∥θ − θ̂tk∥Σ̂t

+ ∥θ̂tk − θ∗∥Σ̂t

)
≤ 2 ∥ϕWk

(st, at)∥Σ̂−1
t

(
∥θ − θ̂tk∥Σ̂tk

+ ∥θ̂tk − θ∗∥Σ̂tk

)
≤ 4β̂T σ̄t

∥∥σ̄−1
t ϕWk

(st, at)
∥∥
Σ̂−1

t

where the first inequality is from the Cauchy-Schwarz inequality, the second one holds because time step t is in episode
k and thus det(Σ̂t) ≤ 2 det(Σ̂tk), and the third one follows from θ∗, θ ∈ Ck and β̂tk ≤ β̂T . Then we may argue that
I4 is less than or equal to
KT∑
k=1

tk+1−1∑
t=tk

min
{
H, 4β̂T σ̄t

∥∥σ̄−1
t ϕWk

(st, at)
∥∥
Σ̂−1

t

}
≤ 4β̂T

KT∑
k=1

tk+1−1∑
t=tk

σ̄t min
{
1,
∥∥σ̄−1

t ϕWk
(st, at)

∥∥
Σ̂−1

t

}

≤ 4β̂T

√√√√ T∑
t=1

σ̄2
t︸ ︷︷ ︸

J1

√√√√KT∑
k=1

tk+1−1∑
t=tk

min
{
1,
∥∥σ̄−1

t ϕWk
(st, at)

∥∥2
Σ̂−1

t

}
︸ ︷︷ ︸

J2

where the first inequality holds because H ≤ 4β̂T σ̄t and the second one is by the Cauchy-Schwarz inequality. Here,
we deduce from (Lemma 11, Abbasi-yadkori et al., 2011) that J2 ≤

√
2d log(1 + T/λ). To get an upper bound on

J1, we show the following two lemmas.
Lemma 5.7. Suppose that the event of Lemma 4.2 holds and that

KT∑
k=1

tk+1−1∑
t=tk

(
[PW 2

k ](st, at)−W 2
k (st+1)

)
≤ H2

√
2T log(1/δ).

Then it holds that
KT∑
k=1

tk+1−1∑
t=tk

[VWk](st, at) = Õ
(
HT +H2d

√
T
)

where Õ(·) hides logarithmic factors in T/(δλ).

Lemma 5.7 gives an upper bound on the variance term due to random transitions. We remark that the bound holds true
even under our extended value iteration scheme with discounting and clipping.
Lemma 5.8. Suppose that the event of Lemma 4.2 holds. Then it holds that

T∑
t=1

Et = Õ
(
d3/2H2

√
T
)

where Õ(·) hides logarithmic factors in TH/λ.

Combining the above results, it holds that

I4 = Õ
(
d
√
HT +H

√
dT + d7/4HT 1/4

)
where Õ(·) hides logarithmic factors in THBθ/δ.
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x0 x1 x0 x1

δ + ⟨a, θ⟩ δ
1− δ − ⟨a, θ⟩ 1− δ

Figure 1: Illustration of the Hard-to-Learn Infinite-Horizon MDP Instance

6 Regret Lower Bound

We deduce our regret lower bound based on the same hard-to-learn MDP instance due to Wu et al. (2022), illustrated in
Figure 1. We derive the result based on the observation that for the MDP instance, the span of the underlying optimal
bias function coincides with the diameter up to a constant multiplicative factor.

There are two states x0 and x1 as in Figure 1. The action space is given by A = {−1, 1}d−1, and the reward function
is given by r(x0, a) = 0 and r(x1, a) = 1 for any a ∈ A. We set the transition core θ̄ as

θ̄ =

(
θ

α
,
1

β

)
where θ ∈

{
− ∆

d− 1
,

∆

d− 1

}d−1

,

with

∆ =
(d− 1)

45
√
(2T log 2)/(5δ)

,

α =
√
∆/((d− 1)(1 + ∆)), and β =

√
1/(1 + ∆). The feature vector is given by ϕ(x0, a, x0) = (−αa, β(1− δ)),

φ(x0, a, x1) = (αa, βδ), φ(x1, a, x0) = (0, βδ), and φ(x1, a, x1) = (0, β(1− δ)).

As a higher stationary probability at state x1 means a larger average reward, choosing the action a that satisfies
⟨a, θ⟩ = ∆ is optimal. Hence, under the optimal policy, the stationary distribution is given by

(µ∗(x0), µ
∗(x1)) =

(
δ

2δ +∆
,
δ +∆

2δ +∆

)
,

and therefore, the optimal average reward is given by

J∗ =
δ +∆

2δ +∆
.

Moreover, we may observe that

(v∗(x0), v
∗(x1)) =

(
0,

1

2δ +∆

)
,

(q∗(x0, a), q
∗(x1, a)) =

(
⟨a, θ⟩ −∆

2δ +∆
,

1

2δ +∆

)
satisfy the Bellman optimality condition (1). In particular, we have

sp(v∗) =
1

2δ +∆
.

When T ≥ 16(d− 1)2δ−1/2025, we have ∆ ≤ δ/3. Therefore, under this construction, we have
1

3δ
≤ sp(v∗) ≤ 1

2δ
.

For this MDP instance, based on (Theorem 5.5, Wu et al., 2022),we may deduce the following regret lower bound.
Theorem 2. Suppose that d ≥ 2 and T ≥ 16(d − 1)2δ−1/2025. Then ∥θ̄∥2 ≤ 1 + δ/3 for any θ ∈ {−∆/(d −
1),∆/(d− 1)}d−1 and ∥φF (x0, a)∥2, ∥φF (x1, a)∥2 ≤ L for any F : S → [0, L]. Moreover, the span, sp(v∗), of the
optimal bias function for the MDP instance satisfies

1

3δ
≤ sp(v∗) ≤ 1

2δ
.

Furthermore, for any algorithm, there exists θ ∈ {−∆/(d− 1),∆/(d− 1)}d−1 under which

E [Regret(T )] ≥ 1

2025

√
T

δ
= Ω

(
d
√

sp(v∗)T
)
.
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As pointed out in (Remark C.1, Wu et al., 2022), the regret lower bound in Theorem 2 also translates to a regret lower
bound for learning infinite-horizon average-reward linear MDPs of bounded span.

7 Conclusion

This paper develops a provably efficient algorithm, UCLK-C for learning infinite-horizon average-reward linear mix-
ture MDPs under the Bellman optimality condition. UCLK-C is the first algorithm that guarantees a nearly minimax
optimal regret upper bound under the Bellman optimality condition. We establish this result based on our finding that
discounted extended value iteration converges even with the additional clipping operation. We expect that this will be
useful for infinite-horizon average-reward reinforcement under the Bellman optimality condition. We present some
numerical results to test the computational performance of UCLK-C in the appendix.

Although we provide a nearly minimax optimal algorithm for linear mixture MDPs, there still exists a gap between
the best-known regret upper and lower bounds for linear MDPs. To close the gap, one may attempt to extend the
framework of this paper and other variance-aware parameter estimation schemes (e.g., He et al., 2023) to the linear
MDP setting. We propose this as an open problem.
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A Confidence Ellipsoids

In this section, we prove Lemma 4.2. We start by analyzing the error term∣∣[V̄tWk](st, at)− [VWk](st, at)
∣∣ .

Note that∣∣[V̄tWk](st, at)− [VWk](st, at)
∣∣

=

∣∣∣∣[⟨ϕW 2
k
(st, at), θ̃t⟩

]
[0,H2]

− ⟨ϕW 2
k
(st, at), θ

∗⟩+ ⟨ϕWk
(st, at), θ

∗⟩2 −
[
⟨ϕWk

(st, at), θ̂t⟩
]2
[0,H]

∣∣∣∣
≤
∣∣∣∣[⟨ϕW 2

k
(st, at), θ̃t⟩

]
[0,H2]

− ⟨ϕW 2
k
(st, at), θ

∗⟩
∣∣∣∣︸ ︷︷ ︸

(a)

+

∣∣∣∣⟨ϕWk
(st, at), θ

∗⟩2 −
[
⟨ϕWk

(st, at), θ̂t⟩
]2
[0,H]

∣∣∣∣︸ ︷︷ ︸
(b)

.

Let us consider term (a) first. Since ⟨ϕW 2
k
(st, at), θ

∗⟩ ∈ [0, H2], it follows that

(a) ≤ min
{
H2,

∣∣∣⟨ϕW 2
k
(st, at), θ̃t⟩ − ⟨ϕW 2

k
(st, at), θ

∗⟩
∣∣∣} .

Moreover, we may apply the Cauchy-Schwarz inequality to the right-hand side, and we obtain

(a) ≤ min

{
H2,

∥∥∥ϕW 2
k
(st, at)

∥∥∥
Σ̃−1

t

∥∥∥θ̃t − θ∗
∥∥∥
Σ̃t

}
.

Next we consider term (b). Again, since ⟨ϕWk
(st, at), θ

∗⟩ ∈ [0, H], we have that (b) ≤ H2. Furthermore,

(b) =

∣∣∣∣⟨ϕWk
(st, at), θ

∗⟩+
[
⟨ϕWk

(st, at), θ̂t⟩
]
[0,H]

∣∣∣∣ · ∣∣∣∣⟨ϕWk
(st, at), θ

∗⟩ −
[
⟨ϕWk

(st, at), θ̂t⟩
]
[0,H]

∣∣∣∣
≤ 2H

∣∣∣∣⟨ϕWk
(st, at), θ

∗⟩ −
[
⟨ϕWk

(st, at), θ̂t⟩
]
[0,H]

∣∣∣∣
≤ 2H

∣∣∣⟨ϕWk
(st, at), θ

∗⟩ − ⟨ϕWk
(st, at), θ̂t⟩

∣∣∣
≤ 2H ∥ϕWk

(st, at)∥Σ̂−1
t

∥∥∥θ̂t − θ∗
∥∥∥
Σ̂t

where the first and second inequalities hold because ⟨ϕWk
(st, at), θ

∗⟩ ∈ [0, H] while the third inequality is due to the
Cauchy-Schwarz inequality. Then we deduce that

(b) ≤ min

{
H2, 2H ∥ϕWk

(st, at)∥Σ̂−1
t

∥∥∥θ̂t − θ∗
∥∥∥
Σ̂t

}
.

Therefore, we deduce that∣∣[V̄tWk](st, at)− [VWk](st, at)
∣∣ ≤ min

{
H2,

∥∥∥ϕW 2
k
(st, at)

∥∥∥
Σ̃−1

t

∥∥∥θ̃t − θ∗
∥∥∥
Σ̃t

}
+min

{
H2, 2H ∥ϕWk

(st, at)∥Σ̂−1
t

∥∥∥θ̂t − θ∗
∥∥∥
Σ̂t

}
.

(6)

Let us consider the following two confidence ellipsoids for θ∗:

Čt =
{
θ ∈ B :

∥∥∥θ − θ̂t

∥∥∥
Σ̂t

≤ β̌t

}
, C̃t =

{
θ ∈ B :

∥∥∥θ − θ̃t

∥∥∥
Σ̃t

≤ β̃t

}
where

β̌t = 8d
√
log(1 + t/λ) log(4t2/δ) + 4

√
d log(4t2/δ) +

√
λBθ,

β̃t = 8H2
√
d log(1 + tH2/(dλ)) log(4t2/δ) + 4H2 log(4t2/δ) +

√
λBθ.

First, we apply Lemma 4.1 to the linear bandit instance defined with

(xt, yt) = (σ̄−1
t ϕWk

(st, at), σ̄
−1
t Wk(st+1)), ηt = yt − ⟨xt, θ

∗⟩ (7)

14



for t ∈ [tk : tk+1 − 1] and k ∈ [KT ]. Then we deduce that

Σ̂t+1 = Zt := λId +

t∑
i=1

xix
⊤
i , b̂t+1 = bt :=

t∑
i=1

yixi, θ̂t+1 = µt := Z−1
t bt.

As Gt = σ(s1, . . . , st) is the σ-algebra generated by s1, . . . , st, we have E [ηt | Gt] = 0. Moreover, we deduce that

|ηt| ≤
√
d

H
|Wk(st+1)− ⟨ϕWk

(st, at), θ
∗⟩| ≤

√
d

because σ̄2
t ≥ H2/d and it follows from Wk(s) ∈ [0, H] for any s ∈ S that

−H ≤ −⟨ϕWk
(st, at), θ

∗⟩ ≤Wk(st+1)− ⟨ϕWk
(st, at), θ

∗⟩ ≤Wk(st+1) ≤ H.

This also implies that E
[
η2 | Gt

]
≤ d and that

∥xt∥2 ≤
√
d

H
∥ϕWk

(st, at)∥2 ≤
√
d.

Then it follows from Lemma 4.1 that with probability at least 1− δ, θ∗ ∈ Čt for all t ∈ [T ].

Next, we apply again Lemma 4.1 to the linear bandit instance defined with

(xt, yt) = (ϕW 2
k
(st, at),W

2
k (st+1)), ηt = yt − ⟨xt, θ

∗⟩ (8)

for t ∈ [tk : tk+1 − 1] and k ∈ [KT ]. Then we deduce that

Σ̃t+1 = Zt := λId +

t∑
i=1

xix
⊤
i , b̃t+1 = bt :=

t∑
i=1

yixi, θ̃t+1 = µt := Z−1
t bt.

As Gt = σ(s1, . . . , st) is the σ-algebra generated by s1, . . . , st, we have E [ηt | Gt] = 0. Since W 2
k (s) ∈ [0, H2] for

any s ∈ S, we have |ηt| ≤ H2 and thus E
[
η2t | Gt

]
≤ H2. Moreover, ∥xt∥2 = ∥ϕW 2

k
(st, at)∥2 ≤ H2. Then, by

Lemma 4.1, it hold with probability at least 1− δ that θ∗ ∈ Ĉt for all t ∈ [T ].

Lastly, we apply Lemma 4.1 to the linear bandit instance defined with

xt = σ̄−1
t ϕWk

(st, at),

ηt = σ̄−1
t 1

{
θ∗ ∈ Čt ∩ C̃t

}
(Wk(st+1)− ⟨ϕWk

(st, at), θ
∗⟩) ,

yt = ηt + ⟨xt, θ
∗⟩

(9)

where 1 {E} denote the indicator function for a given event E . Note that we still have E [ηt | Gt] = 0 where Gt =

σ(s1, . . . , st) is the σ-algebra generated by s1, . . . , st because 1
{
θ∗ ∈ Čt ∩ C̃t

}
is Gt-measurable. Moreover, as

1 {·} ≤ 1, we have |ηt| ≤
√
d and ∥xt∥2 ≤

√
d as before. Let us consider E

[
η2t | Gt

]
. We obtain that

E
[
η2t | Gt

]
= σ̄−2

t 1
{
θ∗ ∈ Čt ∩ C̃t

}
[VWk](st, at)

≤ σ̄−2
t 1

{
θ∗ ∈ Čt ∩ C̃t

}(
[V̄tWk](st, at) + min

{
H2,

∥∥∥ϕW 2
k
(st, at)

∥∥∥
Σ̃−1

t

∥∥∥θ̃t − θ∗
∥∥∥
Σ̃t

})
+ σ̄−2

t 1
{
θ∗ ∈ Čt ∩ C̃t

}
min

{
H2, 2H ∥ϕWk

(st, at)∥Σ̂−1
t

∥∥∥θ̂t − θ∗
∥∥∥
Σ̂t

}
≤ σ̄−2

t

(
[V̄tWk](st, at) + min

{
H2, β̃t

∥∥∥ϕW 2
k
(st, at)

∥∥∥
Σ̃−1

t

}
+min

{
H2, 2Hβ̌t ∥ϕWk

(st, at)∥Σ̂−1
t

})
where the equality holds because 1

{
θ∗ ∈ Čt ∩ C̃t

}
is Gt-measurable, the first inequality follows from (6), and the

second inequality holds due to our construction of Čt and C̃t. Hence, we deduce that

E
[
η2t | Gt

]
≤ σ̄−2

t

(
[V̄tWk](st, at) + Et

)
≤ 1

where the first inequality is due to our choice of Et and the second inequality holds because σ̄2
t ≥ [V̄tWk](st, at) + Et.
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Taking the union bound, with probability at least 1− 3δ, the statement of Lemma 4.1 holds for each of the three linear
bandit instances given by (7), (8), and (9). We denote by E0 this event. Note that under event E0, we have θ∗ ∈ Čt∩ C̃t.
In this case, we have that

|[VWk](st, at)− [V̄tWk](st, at)| ≤ Et.

Moreover, the outcome of Lemma 4.1 for the bandit instance (9) translates to the event that

θ∗ ∈ Ĉt =
{
θ ∈ B : ∥θ − θ̂t∥Σ̂t

≤ β̂t

}
where

β̂t = 8
√
d log(1 + t/λ) log(4t2/δ) + 4

√
d log(4t2/δ) +

√
λBθ,

as required.

B Convergence of Value Iteration with Clipping

In this section, we provide the proofs of Lemmas 5.1 and 5.2.

B.1 Proof of Lemma 5.1: Clipping as a Contraction Map

Let n ∈ [N ], and let s ∈ S. Then it is sufficient to argue that

V (n−1)(s)− V (n)(s) ≤ max
s′∈S

(
Ṽ (n−1)(s′)− Ṽ (n)(s′)

)
.

Recall that V (i)(s) = min{Ṽ (i)(s),mins′∈S Ṽ (i)(s′) +H} for i ∈ {n− 1, n}. Then there are two cases to consider
depending on the value of V (n)(s).

Case I: V (n)(s) = Ṽ (n)(s). Note that V (n−1)(s) ≤ Ṽ (n−1)(s). This in turn implies that

V (n−1)(s)− V (n)(s) ≤ Ṽ (n−1)(s)− Ṽ (n)(s) ≤ max
s′∈S

(
Ṽ (n−1)(s′)− Ṽ (n)(s′)

)
.

Case II: V (n)(s) = mins′∈S Ṽ (n)(s′) +H . Note that V (n−1)(s) ≤ mins′∈S Ṽ (n−1)(s′) +H . Then it follows that

V (n−1)(s)− V (n)(s) ≤ min
s′∈S

Ṽ (n−1)(s′) +H − min
s′∈S

Ṽ (n)(s′)−H = min
s′∈S

Ṽ (n−1)(s′)− min
s′∈S

Ṽ (n)(s′).

Note that the right-most side satisfies

min
s′∈S

Ṽ (n−1)(s′)− min
s′∈S

Ṽ (n)(s′)

= −max
s′∈S

(
−Ṽ (n−1)(s′)

)
+max

s′∈S

(
−Ṽ (n)(s′)

)
≤ −max

s′∈S

(
−Ṽ (n−1)(s′)

)
+max

s′∈S

(
−Ṽ (n−1)(s′)

)
+max

s′∈S

(
Ṽ (n−1)(s′)− Ṽ (n)(s′)

)
= max

s′∈S

(
Ṽ (n−1)(s′)− Ṽ (n)(s′)

)
where the inequality holds because maxp{f(p) + g(p)} ≤ maxp{f(p)}+maxp{g(p)}, as required.

B.2 Proof of Lemma 5.2: Convergence of Discounted Extended Value Iteration with Clipping

We will first show the following lemma.
Lemma B.1. Let N be the number of rounds for discounted extended value iteration with clipping. Then for any
episode k, it holds that Q(N−1)(s, a)−Q(N)(s, a) ≤ γN−1 for any (s, a) ∈ S ×A.

Proof. We consider the discounted extended value iteration procedure with clipping for a fixed episode k. Note that
for n ≥ 2, we have

Q(n)(s, a) = r(s, a) + γmax
θ∈Ck

⟨ϕV (n−1)(s, a), θ⟩,

Q(n−1)(s, a) = r(s, a) + γmax
θ∈Ck

⟨ϕV (n−2)(s, a), θ⟩.
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This implies that for any (s, a) ∈ S ×A,

Q(n−1)(s, a)−Q(n)(s, a) = γ

(
max
θ∈Ck

⟨ϕV (n−2)(s, a), θ⟩ −max
θ∈Ck

⟨ϕV (n−1)(s, a), θ⟩
)

≤ γmax
θ∈Ck

(⟨ϕV (n−2)(s, a), θ⟩ − ⟨ϕV (n−1)(s, a), θ⟩)

= γmax
θ∈Ck

⟨ϕV (n−2)−V (n−1)(s, a), θ⟩

(10)

where the inequality holds because maxp{f(p) + g(p)} ≤ maxp{f(p)} + maxp{g(p)}. Recall that for any θ ∈ Ck
induces a probability distribution with ϕ(s, a, s′) given by Pθ(s

′ | s, a) = ⟨ϕ(s, a, s′), θ⟩. Then it follows that

γ⟨ϕV (n−2)−V (n−1)(s, a), θ⟩ = γEs′∼Pθ(·|s,a)

[
V (n−2)(s′)− V (n−1)(s′)

]
≤ γmax

s′∈S

(
V (n−2)(s′)− V (n−1)(s′)

)
≤ γmax

s′∈S

(
Ṽ (n−2)(s′)− Ṽ (n−1)(s′)

) (11)

where the second inequality is due to Lemma 5.1. Combining (10) and (11), we have

max
(s,a)∈S×A

(
Q(n−1)(s, a)−Q(n)(s, a)

)
≤ γmax

s∈S

(
Ṽ (n−2)(s)− Ṽ (n−1)(s)

)
. (12)

Here, the right-hand side of (12) can be further bounded as follows.

γmax
s∈S

(
Ṽ (n−2)(s)− Ṽ (n−1)(s)

)
= γmax

s∈S

(
max
a∈A

Q(n−2)(s, a)−max
a∈A

Q(n−1)(s, a)

)
≤ γ max

(s,a)∈S×A

(
Q(n−2)(s, a)−Q(n−1)(s, a)

) (13)

where the inequality is due to maxa′{f(a′)+g(a′)} ≤ maxa′{f(a′)}+maxa′{g(a′)} as before. Therefore, it follows
that for any n ≥ 2,

max
(s,a)∈S×A

(
Q(n−1)(s, a)−Q(n)(s, a)

)
≤ γ max

(s,a)∈S×A

(
Q(n−2)(s, a)−Q(n−1)(s, a)

)
.

In particular, this implies that

max
(s,a)∈S×A

(
Q(N−1)(s, a)−Q(N)(s, a)

)
≤ γN−1 max

(s,a)∈S×A

(
Q(0)(s, a)−Q(1)(s, a)

)
= γN−1 max

(s,a)∈S×A

(
1

1− γ
− r(s, a)− γ

1− γ

)
≤ γN−1

where the last inequality holds because 0 ≤ r(s, a) ≤ 1.

Based on Lemma B.1, we complete the proof of Lemma 5.2. Note that

Q(N)(st, at) = r(st, at) + γmax
θ∈Ck

⟨ϕV (N−1)(st, at), θ⟩

≤ r(st, at) + γmax
θ∈Ck

⟨ϕV (N)(st, at), θ⟩+ γmax
θ∈Ck

⟨ϕV (N−1)−V (N)(st, at), θ⟩

≤ r(st, at) + γmax
θ∈Ck

⟨ϕV (N)(st, at), θ⟩+ γmax
s∈S

(
Ṽ (N−1)(s)− Ṽ (N)(s)

)
≤ r(st, at) + γmax

θ∈Ck

⟨ϕV (N)(st, at), θ⟩+ γ max
(s,a)∈S×A

(
Q(N−1)(s, a)−Q(N)(s, a)

)
≤ r(st, at) + γmax

θ∈Ck

⟨ϕV (N)(st, at), θ⟩+ γN

where the first inequality applies the same argument as in (11), the second inequality follows the same argument as
in (13), and the third inequality is due to Lemma B.1. Since Q(N) equals Qk and V (N) equals Vk, we have

Qk(st, at) ≤ r(st, at) + γmax
θ∈Ck

⟨ϕVk
(st, at), θ⟩+ γN ,

as required.
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C Regret Analysis and Proofs

In this section, we prove Lemma 5.3 and Lemmas 5.5 to 5.8. Based on these results, in Appendix C.6, we complete
the proof of Theorem 1.

C.1 Proof of Lemma 5.3: Optimistic Estimators for Value Functions

For a fixed episode k, we prove by induction on n that for any (s, a) ∈ S ×A,
1

1− γ
≥ V (n)(s) ≥ V ∗(s),

1

1− γ
≥ Q(n)(s, a) ≥ Q∗(s, a).

by induction on n. For n = 0, it is trivial that

V (0) =
1

1− γ
≥ V ∗(s), Q(0)(s, a) =

1

1− γ
≥ Q∗(s, a)

for every (s, a) ∈ S ×A. Next, we assume that for some n ≥ 0, the inequalities
1

1− γ
≥ V (n)(s) ≥ V ∗(s) and

1

1− γ
≥ Q(n)(s, a) ≥ Q∗(s, a)

hold for all (s, a) ∈ S ×A. First of all, since any θ ∈ Ck induces a probability distribution, we get

Q(n+1)(s, a) = r(s, a) + γmax
θ∈Ck

⟨ϕV (n)(s, a), θ⟩ ≤ 1 +
γ

1− γ
=

1

1− γ

because r(s, a) ≤ 1 and V (n)(s′) ≤ (1− γ)−1 for any s′ ∈ S. Then

V (n+1) ≤ Ṽ (n+1)(s) = max
a∈A

Q(n+1)(s, a) ≤ 1

1− γ
.

Next, we show that Q(n+1)(s, a) ≥ Q∗(s, a) for any (s, a) ∈ S ×A. Note that

Q(n+1)(s, a) = r(s, a) + γmax
θ∈Ck

⟨ϕV (n)(s, a), θ⟩

≥ r(s, a) + γ⟨ϕV (n)(s, a), θ∗⟩
= r(s, a) + γ[PV (n)](s, a)

≥ r(s, a) + γ[PV ∗](s, a)

= Q∗(s, a)

where the first inequality holds because θ∗ ∈ Ck = Ĉtk , the second inequality is by the induction hypothesis, and the
last equality is by the Bellman optimality condition (2).

Let us also consider V (n+1). Note that
Ṽ (n+1)(s)− V ∗(s) = max

a∈A
Q(n+1)(s, a)−max

a∈A
Q∗(s, a)

≥ max
a∈A

Q∗(s, a)−max
a∈A

Q∗(s, a)

= 0,

where the inequality holds because Q(n+1)(s, a) ≥ Q∗(s, a) for any (s, a) ∈ S × A. This in turn implies that
Ṽ (n+1)(s) ≥ V ∗(s) for any s ∈ S. This further implies that

V (n+1)(s) = min

{
Ṽ (n+1)(s),min

s′∈S
Ṽ (n+1)(s′) +H

}
≥ min

{
V ∗(s),min

s′∈S
V ∗(s′) +H

}
= V ∗(s),

where the first inequality comes from our observation that Ṽ (n+1)(s) ≥ V ∗(s) for any s ∈ S while the second equality
holds because sp(V ∗) ≤ 2 · sp(v∗) ≤ H , as supported by Lemma 5.4.

Since k was chosen arbitrarily, we conclude that in every episode, for all n ∈ [N ] and for all (s, a) ∈ S ×A,

V (n)(s) ≥ V ∗(s), Q(n)(s, a) ≥ Q∗(s, a),

as required.
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C.2 Proof of Lemma 5.5: Upper Bound on the Number of Episodes

Note that det(Σ̂1) = λd because Σ̂1 = λId. To upper bound det(Σ̂T+1), we apply the following lemma.

Lemma C.1. (Lemma 10, Abbasi-yadkori et al., 2011) For any x1, . . . , xT ∈ Rd such that ∥xt∥2 ≤ L, let A1 = λId
and At+1 = λId +

∑t
i=1 xix

⊤
i for t ≥ 1. Then

det(Σ̂T+1) ≤
(
λ+

TL2

d

)d

.

Recall that

Σ̂T+1 = λId +

KT∑
k=1

tk+1−1∑
t=tk

ϕWk
(st, at)ϕWk

(st, at)
⊤.

Here, we have ∥ϕWk
(st, at)∥2 ≤ H as Wk(s) ∈ [0, H] for any s ∈ S. By applying Lemma C.1, we get

det(Σ̂T+1) ≤
(
λ+

TH2

d

)d

.

As λ = 1/B2
θ , it follows that

det(Σ̂T+1)

det(Σ̂1)
≤
(
1 +

TH2

dλ

)d

=

(
1 +

TH2B2
θ

d

)d

.

Moreover, note that
det(Σ̂T+1) ≥ det(Σ̂T ) ≥ det(Σ̂tKT

) ≥ · · · ≥ 2KT−1 det(Σ̂t1),

implying in turn that

KT ≤ 1 + log2(det(Σ̂T+1)/ det(Σ̂t1)) ≤ 1 + d log2(1 + TH2B2
θ/d),

as required.

C.3 Proof of Lemma 5.6: Martingale Difference Sequence

The term I3 is a sum of martingale difference sequence {ηt}∞t=1 with regard to a filtration {Gt}∞t=0, where

ηt = ⟨ϕVk
(st, at), θ

∗⟩ − Vk(st+1)

and Gt = σ(s1, . . . , st) is the σ-algebra generated by s1, . . . , st. for t ∈ [tk : tk+1 − 1]. This is because ηt is
Gt+1-measurable, E[|ηt|] <∞, and E[ηt|Gt] = 0, which we will show in the following paragraphs. In fact, we have

ηt = ⟨ϕVk
(st, at), θ

∗⟩ − Vk(st+1) = ⟨ϕWk
(st, at), θ

∗⟩ −Wk(st+1),

which implies that
|ηt| ≤ sp(Wk) ≤ H.

Lemma C.2. (Azuma-Hoeffding inequality) Let {Xk}∞k=0 be a discrete-parameter real-valued martingale sequence
such that for every k ∈ N, the condition |Xk − Xk−1| ≤ µ holds for some non-negative constant µ. Then with
probability at least 1− δ, we have

Xn −X0 ≤ µ
√

2n log(1/δ).

Since Xt =
∑t

n=1 ηt for t ≥ 1 and X0 give rise to a martingale sequence with |ηt| ≤ H , it follows from Lemma C.2
that

I3 ≤ H
√
2T log(1/δ)

holds with probability at least 1− δ.
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C.4 Proof of Lemma 5.7: Variance Term

Note that
KT∑
k=1

tk+1−1∑
t=tk

[VWk](st, at)

=

KT∑
k=1

tk+1−1∑
t=tk

(
[PW 2

k ](st, at)− ([PWk](st, at))
2
)

=

KT∑
k=1

tk+1−1∑
t=tk

(
[PW 2

k ](st, at)−W 2
k (st+1)

)
+

KT∑
k=1

tk+1−1∑
t=tk

(
W 2

k (st+1)−W 2
k (st)

)
+

KT∑
k=1

tk+1−1∑
t=tk

(
W 2

k (st)− ([PWk](st, at))
2
)

=

KT∑
k=1

tk+1−1∑
t=tk

(
[PW 2

k ](st, at)−W 2
k (st+1)

)
+

KT∑
k=1

tk+1−1∑
t=tk

(
W 2

k (st)− ([PWk](st, at))
2
)

+

KT∑
k=1

(
W 2

k (stk+1
)−W 2

k (stk)
)

≤
KT∑
k=1

tk+1−1∑
t=tk

(
[PW 2

k ](st, at)−W 2
k (st+1)

)
︸ ︷︷ ︸

(i)

+

KT∑
k=1

tk+1−1∑
t=tk

(
W 2

k (st)− ([PWk](st, at))
2
)

︸ ︷︷ ︸
(ii)

+H2KT .

By the condition of the lemma, we have
(i) ≤ H2

√
2T log(1/δ).

Let us consider the term (ii). Note that

(ii) =

KT∑
k=1

tk+1−1∑
t=tk

(Wk(st)− [PWk](st, at)) (Wk(st) + [PWk](st, at)) .

Here, we have
Wk(st) = Vk(st)− min

s′∈S
Vk(s

′)

≤ Ṽk(st)− min
s′∈S

Vk(s
′)

= Qk(st, at)− min
s′∈S

Vk(s
′)

≤ 1 + γN +max
θ∈Ck

⟨ϕVk
(st, at), θ⟩ − min

s′∈S
Vk(s

′)

≤ 2 + max
θ∈Ck

⟨ϕWk
(st, at), θ⟩

where the second inequality holds because γ ≤ 1 and r(st, at) ≤ 1 and the third inequality holds because γ ≤ 1 and
any θ ∈ Ck induces a probability distribution. Then it follows that

(ii) ≤ 2

KT∑
k=1

tk+1−1∑
t=tk

(Wk(st) + [PWk](st, at)) +

KT∑
k=1

tk+1−1∑
t=tk

(
max
θ∈Ck

⟨ϕWk
(st, at), θ − θ∗⟩

)
(Wk(st) + [PWk](st, at))

≤ 4HT + 2H

KT∑
k=1

tk+1−1∑
t=tk

∣∣∣∣max
θ∈Ck

⟨ϕWk
(st, at), θ − θ∗⟩

∣∣∣∣ .
Note that∣∣∣∣max

θ∈Ck

⟨ϕWk
(st, at), θ − θ∗⟩

∣∣∣∣ ≤ max
θ∈Ck

|⟨ϕWk
(st, at), θ − θ∗⟩| ≤ max

θ∈Ck

∥ϕWk
(st, at)∥Σ̂−1

t
∥θ − θ∗∥Σ̂t

.

To bound the right-most side, we need the following lemma.
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Lemma C.3. (Abbasi-yadkori et al., 2011, Lemma 12) Let A,B ∈ Rd×d be positive semidefinite matrices such that
A ⪰ B. Then for any x ∈ Rd, we have ∥x∥A ≤ ∥x∥B

√
det(A)/det(B).

By Lemma C.3, we have ∥θ − θ∗∥Σ̂t
≤ 2∥θ − θ∗∥Σ̂tk

. Therefore,∣∣∣∣max
θ∈Ck

⟨ϕWk
(st, at), θ − θ∗⟩

∣∣∣∣ ≤ √2max
θ∈Ck

∥ϕWk
(st, at)∥Σ̂−1

t

(
∥θ − θ̂tk∥Σ̂tk

+ ∥θ̂tk − θ∗∥Σ̂tk

)
≤ 2
√
2β̂T ∥ϕWk

(st, at)∥Σ̂−1
t

where the second inequality holds because θ, θ∗ ∈ Ck. Meanwhile, we already know that |⟨ϕWk
(st, at), θ − θ∗⟩| ≤ H

for any θ that induces a probability distribution. Then it follows that

KT∑
k=1

tk+1−1∑
t=tk

∣∣∣∣max
θ∈Ck

⟨ϕWk
(st, at), θ − θ∗⟩

∣∣∣∣ ≤ KT∑
k=1

tk+1−1∑
t=tk

min
{
H, 2
√
2β̂T ∥ϕWk

(st, at)∥Σ̂−1
t

}

≤
KT∑
k=1

tk+1−1∑
t=tk

2
√
2β̂T σ̄t min

{
1,
∥∥σ̄−1

t ϕWk
(st, at)

∥∥
Σ̂−1

t

}

≤ 4
√
2Hβ̂T

KT∑
k=1

tk+1−1∑
t=tk

min
{
1,
∥∥σ̄−1

t ϕWk
(st, at)

∥∥
Σ̂−1

t

}

≤ 4
√
2Hβ̂T

√
T

√√√√KT∑
k=1

tk+1−1∑
t=tk

min
{
1,
∥∥σ̄−1

t ϕWk
(st, at)

∥∥2
Σ̂−1

t

}
where the second inequality is from H ≤ 4β̂T σ̄t, the third inequality holds because we have [V̄tWk](st, at) ≤ H2

and Et ≤ 2H2, which implies that σ̄t ≤
√
max{H2/d, 3H2} ≤ 2H , and the last inequality is implied by the

Cauchy-Schwarz inequality. To bound the right-most side, we need the following lemma.

Lemma C.4. (Lemma 11, Abbasi-yadkori et al., 2011). Suppose x1, . . . , xt ∈ Rd and ∥xs∥2 ≤ L for any 1 ≤ s ≤ t.
Let Vt = λId +

∑t
i=1 xix

⊤
i for some λ > 0. Then

t∑
i=1

min
{
1, ∥xi∥2V −1

i−1

}
≤ 2d log

(
1 +

tL2

dλ

)
.

Since
∥∥σ̄−1

t ϕWk
(st, at)

∥∥
2
≤
√
d, Lemma C.4 implies that

KT∑
k=1

tk+1−1∑
t=tk

min
{
1,
∥∥σ̄−1

t ϕWk
(st, at)

∥∥2
Σ̂−1

t

}
≤ 2d log(1 + T/λ), (14)

implying in turn that

(ii) ≤ 4HT + 16H2β̂T

√
dT log(1 + T/λ).

Consequently,

KT∑
k=1

tk+1−1∑
t=tk

[VWk](st, at) ≤ (i) + (ii) +H2KT ≤ 4HT + 16H2β̂T

√
dT log(1 + T/λ) +H2KT .

Then it follows from our choice of β̂T and Lemma 5.5 that

KT∑
k=1

tk+1−1∑
t=tk

[VWk](st, at) = Õ
(
HT +H2d

√
T
)

where Õ(·) hides logarithmic factors in T/(δλ).
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C.5 Proof of Lemma 5.8: Cumulative Error in Estimating the Variance

Note that
T∑

t=1

Et =

KT∑
k=1

tk+1−1∑
t=tk

min
{
H2, 2Hβ̌t∥ϕWk

(st, at)∥Σ̂−1
t

}
︸ ︷︷ ︸

(I)

+

KT∑
k=1

tk+1−1∑
t=tk

min
{
H2, β̃t∥ϕW 2

k
(st, at)∥Σ̃−1

t

}
︸ ︷︷ ︸

(II)

.

Term (I) can be bounded as follows:

(I) ≤
KT∑
k=1

tk+1−1∑
t=tk

2Hβ̌tσ̄t min
{
1, ∥σ̄−1

t ϕWk
(st, at)∥Σ̂−1

t

}

≤ 4H2β̌T

KT∑
k=1

tk+1−1∑
t=tk

min
{
1, ∥σ̄−1

t ϕWk
(st, at)∥Σ̂−1

t

}

≤ 4H2β̌T

√
T

√√√√KT∑
k=1

tk+1−1∑
t=tk

min
{
1,
∥∥σ̄−1

t ϕWk
(st, at)

∥∥2
Σ̂−1

t

}
≤ 8H2β̌T

√
dT log(1 + T/λ)

where the first inequality is due to H ≤ 2β̌tσ̄t, the second inequality holds because we have [V̄tWk](st, at) ≤ H2 and
Et ≤ 2H2, which implies that σ̄t ≤

√
max{H2/d, 3H2} ≤ 2H , the third inequality is due to the Cauchy-Schwarz

inequality, and the last one follows from (14).

Term (II) can be bounded as follows:

(II) ≤ β̃T

KT∑
k=1

tk+1−1∑
t=tk

min
{
1, ∥ϕW 2

k
(st, at)∥Σ̃−1

t

}

≤ β̃T

√
T

√√√√KT∑
k=1

tk+1−1∑
t=tk

min
{
1, ∥ϕW 2

k
(st, at)∥2Σ̃−1

t

}
≤ 2β̃T

√
dT log(1 + TH2/λ)

where the first inequality holds because H2 ≤ β̃t ≤ β̃T , the second inequality is by the Cauchy-Schwarz inequality,
and the third one follows from Lemma C.4.

Therefore, it holds that
T∑

t=1

Et ≤ 8H2β̌T

√
dT log(1 + T/λ) + 2β̃T

√
dT log(1 + TH2/λ).

Due to our choice of β̌T and β̃T , we have
T∑

t=1

Et = Õ
(
d3/2H2

√
T
)

where Õ(·) hides logarithmic factors in TH/λ, as required.

C.6 Completing the Proof of Theorem 1: Regret Upper Bound of UCLK-C

We first provide an upper bound on I4. Let θ ∈ Ck. Since θ induces a probability distribution Pθ, we have

⟨ϕVk
(st, at), θ − θ∗⟩ = Es′∼Pθ(·|st,at)[Vk(s

′)]− Es′∼P(·|st,at)[Vk(s
′)]

= Es′∼Pθ(·|st,at)[Vk(s
′)]− min

s′∈S
Vk(s

′)− Es′∼P(·|st,at)[Vk(s
′)] + min

s′∈S
Vk(s

′)

= Es′∼Pθ(·|st,at)[Wk(s
′)]− Es′∼P(·|st,at)[Wk(s

′)]

= ⟨ϕWk
(st, at), θ − θ∗⟩.
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Moreover, assuming that θ∗ ∈ Ck based on Lemma 4.2, we have

⟨ϕWk
(st, at), θ − θ∗⟩ ≤ ∥ϕWk

(st, at)∥Σ̂−1
t

(
∥θ − θ̂tk∥Σ̂t

+ ∥θ̂tk − θ∗∥Σ̂t

)
≤ 2 ∥ϕWk

(st, at)∥Σ̂−1
t

(
∥θ − θ̂tk∥Σ̂tk

+ ∥θ̂tk − θ∗∥Σ̂tk

)
≤ 4β̂T σ̄t

∥∥σ̄−1
t ϕWk

(st, at)
∥∥
Σ̂−1

t

where the first inequality is from the Cauchy-Schwarz inequality, the second one holds by Lemma C.3, and the third
one follows from θ∗, θ ∈ Ck and β̂tk ≤ β̂T . We also know that

⟨ϕWk
(st, at), θ − θ∗⟩ = Es′∼Pθ(·|st,at)[Wk(s

′)]− Es′∼P(·|st,at)[Wk(s
′)] ∈ [−H,H]

because Wk(s) ∈ [0, H] for any s ∈ S. Then it follows that

I4 ≤
KT∑
k=1

tk+1−1∑
t=tk

min
{
H, 4β̂T σ̄t

∥∥σ̄−1
t ϕWk

(st, at)
∥∥
Σ̂−1

t

}

≤ 4β̂T

KT∑
k=1

tk+1−1∑
t=tk

σ̄t min
{
1,
∥∥σ̄−1

t ϕWk
(st, at)

∥∥
Σ̂−1

t

}

≤ 4β̂T

√√√√ T∑
t=1

σ̄2
t︸ ︷︷ ︸

J1

√√√√KT∑
k=1

tk+1−1∑
t=tk

min
{
1,
∥∥σ̄−1

t ϕWk
(st, at)

∥∥2
Σ̂−1

t

}
︸ ︷︷ ︸

J2

where the second inequality holds because H ≤ 4βT σ̄t and the third one is by the Cauchy-Schwarz inequality.

Note that by the Azuma-Hoeffding inequality (Lemma C.2),

KT∑
k=1

tk+1−1∑
t=tk

(
[PW 2

k ](st, at)−W 2
k (st+1)

)
≤ H2

√
2T log(1/δ) (15)

holds with probability at least 1 − δ. By taking the union bound, all of the statement of Lemma 4.2, the statement of
Lemma 5.6, and (15) hold with probability at least 1− 5δ.

Now we suppose that all of the statement of Lemma 4.2, the statement of Lemma 5.6, and (15) hold. For the term J1,
note that

T∑
t=1

σ̄2
t =

KT∑
k=1

tk+1−1∑
t=tk

max
{
H2/d, [V̄tWk](st, at) + Et

}
≤

KT∑
k=1

tk+1−1∑
t=tk

max
{
H2/d, [VWk](st, at) + 2Et

}
≤ TH2/d+

KT∑
k=1

tk+1−1∑
t=tk

[VWk](st, at) + 2

T∑
t=1

Et

where the first inequality is from Lemma 4.2 and the second inequality holds because both H2/d and [VWk](st, at)+
2Et are nonnegative. Then we obtain from Lemmas 5.7 and 5.8 that

T∑
t=1

σ̄2
t = Õ

(
H2T/d+HT +H2d

√
T + d3/2H2

√
T
)

where Õ(·) hides logarithmic factors in TH/(δλ). Moreover, we know that J2 ≤
√

2d log(1 + T/λ) by (14). There-
fore, we finally deduce that

I4 = Õ
(√

d ·
√
H2T/d+HT +H2d

√
T + d3/2H2

√
T ·
√
d

)
= Õ

(
H
√
dT + d

√
HT + d7/4HT 1/4

)
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where Õ(·) hides logarithmic factors in TH/(δλ).

Recall that when λ = 1/B2
θ we have

I1 ≤ d
√

sp(v∗)T = d
√
HT,

I2 = Õ
(
d
√
HT

)
,

I3 ≤ H
√
2d log(1/δ).

Lastly, setting γ and N as

γ = 1−
√

d

HT
and N =

1

1− γ
log

( √
T

d
√
H

)
=

√
HT

d
log

( √
T

d
√
H

)
,

we have

N ≥
log
(√

T/d
√
H
)

log(1/γ)
,

in which case we get TγN ≤ d
√
HT .

Therefore, we conclude that with probability at least 1− 5δ

Regret(T ) = Õ
(
H
√
dT + d

√
HT + d7/4HT 1/4

)
where Õ(·) hides logarithmic factors in THBθ/δ.

D Experiments

In this section, we empirically compare the performance of UCLK-C and UCRL2-VTR, which uses Bernstein-type explo-
ration (Wu et al., 2022). We run simulations on the MDP instance introduced in Section 6. Given that both algorithms
achieve minimax optimality for the MDP instance as it is communicating, our comparison provides an intuitive under-
standing of how controlling the span of the value function can improve regret performance. The next paragraph details
the experimental setup and results.

Figure 2: Regret comparison of UCLK-C and UCRL2-VTR (Bernstein-type), δ = 1/120 (⇔ D = 120)

We choose d = 8, thereby the resulting MDP consists of two states (|S| = 2) and 128 actions (|A| = 2d−1 = 128).
Furthermore, we set ∆ = (d − 1)/(15

√
(2T log 2)/(5δ)), scaling the original quantity introduced in Section 6 by

a factor of 3 in our implementation to ensure effective learning procedure. Specifically, using the original formula
(∆ = (d − 1)/(45

√
(2T log 2)/(5δ))) results in a very small value, making the transition probabilities for the best

and worst actions nearly identical, which hinders effective learning. One possible solution would be then to increase
the value of d, but due to computing resource constraints, we instead scaled the constant factor. This adjustment does
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not affect the theoretical guarantee of the regret lower bound (see the proof of (Theorem 5.5, Wu et al., 2022)) but
allows for more practical implementation.

Under this setting, we compared the two algorithms based on the average regret with respect to the best action,
calculated over 10 realizations of the experiment conducted on a time horizon in units of thousands for each algorithm.
The hyperparameters for each algorithm were properly tuned, and the averaged regret for the instance with δ = 1/120
is plotted in Figure 2. Our proposed algorithm, UCLK-C, outperforms UCRL2-VTR, demonstrating the effectiveness of
controlling the span for improving regret performance.
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