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1 Outline

In this lecture, we study

e Convergence of gradient descent,
e Subgradients,
e Optimality conditions for non-differentiable functions,

e Subgradient method

2 Convergence of gradient descent

Recall that

e choosing proper step sizes,
e analyzing convergence rate, and

e analyzing a required number of iterations

are important when we develop the gradient descent method. In this section, we will see how
various structural assumptions on the objective function lead to certain choices of step sizes and
the resulting convergence rates. We state the corresponding convergence results without proofs for
now, but we will get to prove them later in the course.

2.1 Smooth functions

We say that a differentiable function f : R — R is smooth if there exists some > 0 such that

IVf(x) = Villa < Blle =yl

holds for any x,y € R?. More precisely, we say that f is 3-smooth in the norm || - [|o. Recall that
a convex function f satisfies

fy) > f(@) + Vi) (y—=).
If f is B-smooth, then
£) < F@)+ V@)~ )+ Sy 213,

Theorem 9.1. Let f : R — R be 3-smooth, and let {x; : t = 1,...,T + 1} be the sequence of
iterates generated by gradient descent with step size n, = 1/ for each t. Then

_ax]|2
flara) - fla) < 1Tl

where x* is an optimal solution to min,cga f(x).



Here, z1 and x* are some fixed vectors, which means that ||z; — 2*|| is a constant. Moreover, the
smoothness parameter § is also a constant. Hence, the convergence rate is O(1/T"). Therefore,
after T'= O(1/e) iterations, we have

flara) = f(2%) <e
2.2 Smooth and strongly convex functions

We say that a function is strongly convex if there exists some a > 0 such that
Q2
Fw) = Sl

is convex. More precisely, we say that f is a-strongly convex in the norm || - ||2. If f is a-strongly
convex, then

e
fly) = f@) + Vi) (y— )+ Slly = =l
If f is B-smooth and a-strongly convex, then it follows that

Uy — 2l < (Fw) ~ @) ~ V@) Ty —2) <

Here, we call Kk = 8/« the condition number of f. In fact, when f is both smooth and strongly
convex, it leads to a drastic improvement in the convergence rate. The convergence rate depends
on the condition number x.

ly — =]3-

Theorem 9.2. Let f : R — R be 3-smooth and a-strongly convez, and let {zy:t=1,..., T+ 1}

be the sequence of iterates generated by gradient descent with sep size ny = 2/(av + ) for each t.
Then

. B 4T
Flaren) — f@) < Sexp [~ o — a3
where x* is an optimal solution to min,cga f(x).

Note that exp(—4/(k+1)) < 1, and therefore, the convergence rate is O(c!') where ¢ = exp(—4/(k+
1)) < 1. Hence, we achieve linear convergence, and after T'= O(log(1/¢)) iterations, we have

fary) — f(@%) <e
2.3 Lipschitz continuous functions

We say that a differentiable function is Lipschitz continuous if there exists some L > 0 such that

[f(x) = f(y)l < Lz =yl

for any x,y € R%. More precisely, we say that f is L-Lipschitz continuous in the norm || - ||o. This
is equivalent to
IVf(@)l2 < L

for any = € R%.

Theorem 9.3. Let f : R? — R be L-Lipschitz continuous, and let {xy : t = 1,..., T} be the
sequence of iterates generated by gradient descent with step size n; = ||z — x*||2/LVT for each t.

Then .
1 oy < Lz — ™|
= e | — f(27) L —————
() - st < B
where x* is an optimal solution to min,cga f(x).
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Here, we take the average of the points 1, ..., z7. Hence, the convergence rate is O(1/v/T). This
means that after O(1/€?) iterations, we have

L I
f(thlxt> — f(z¥) <e.

In fact, Lipschitz continuity extends to non-differentiable functions, and gradient descent guaran-
tees the same convergence rate for any non-differentiable functions as long as they are Lipschitz
continuous.

2.4 Lipschitz continuous and strongly convex functions
If we assume strong convexity, then we deduce a faster convergence.

Theorem 9.4. Let f : R? — R be L-Lipschitz continuous and a-strongly convex, and let {x; : t =
1,...,T} be the sequence of iterates generated by gradient descent with step size ny = 2/a(t+1) for

each t. Then .
2t . 212
f(;mmx> ERRET)

where x* is an optimal solution to min,cga f(x).

Here, we take an weighted average of the points z1,...,2p. The converge rate is O(1/T), and after
O(1/e) iterations, we have

Ty .
f(ZT(T_'_l)xt) - f@¥) <e

t=1
3 Subgradients

The first-order characterization of convex functions states that a differentiable function f is convex
if and only if dom(f) is convex and

f) > fla)+ Vi) (y—)

for all 2,y € dom(f). For a function that is not necessarily differentiable, we can define the notion
of subgradients as well as subdifferentials.

Definition 9.5. Given a convex function f : R? — R and a fixed point x € dom(f), the subdiffer-
ential of f at x is defined as

of@)={g: ) > f&)+ ¢ (y—=) vy edom(f)}.
Here, any g € 0f(z) is called a subgradient of f at x.

Conversely, the subdifferential is the set of subgradients. If function f is differentiable at x, then
we have 0f(z) = {Vf(z)}, and therefore, the subdifferential reduces to the gradient. In contrast,
a non-differentiable function may have more than one subgradient. Moreover, note that for any
subgradient g at x, f(z) +g¢' (y — x) provies a lower approximation of the function f.
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Figure 9.1: Subgradients of f(z) = || at x =0

Recall that for a differentiable univariate function f, the gradient of f at some point x is the slope
of the line tangent to f at z. We have a similar geometric intuition for subgradients. Consider the
the absolute value function f(z) = |z| over € R, which is not differentiable at x = 0. As depicted
in Figure 9.1, there are multiple lines that are below f(z) = |z| and go through z = 0. In fact, the
subdifferential of f can be computed as follows.

{—1} = {sign(z)}, forz <0
of(x) = ¢ [-1,1], forz =0
{+1} = {sign(z)}, forz >0

| {sign(x)}, for z #0
~[-1,1], for x = 0.

Let us consider a few more examples.

Example 9.6. Let f(z) = |z|; : RY — R. Then the subdifferential of f at any point z =
(x1,...,24)" is the set of vectors g = (g1,...,94) " such that for each i € [d],

 Jsign(z;), ifx; #0
=11, ifa =0

Example 9.7. Let fi1,..., fi be convex functions, and let f is defined as the pointwise maximum
of fi,..., fx. Given a point z, if f(z) = fi(z) for some i € [k], then any subgradient of f; is a
subgradient of f.

Example 9.8. Given a convex set C C R? the indicator function Ic(z) at a point z € R? is
defined as
0, ifxeC
Io(x) = . -
+oo, ifzx¢C
For a point z € C, what is the subdifferential of the indicator function at ? Note that
Io(z) = {g eRY: 0>04¢9"(y—2) Vye C’} = N¢(x).

Therefore, the subdifferential is precisely the normal cone of C' at x.

4 Optimality conditions for non-differentiable convex functions
Now we consider the convex minimization problem with a general convex objective function that
is not necessarily differentiable.

minimize f(x) minimize f(x) + Io(x)
subjectto x€C ~  subject to x€R%

4



The left is the constrained version, and the right formulation shows its unconstrained version with
the indicator function. We discussed optimality conditions for convex minimization problems with
a differentiable objective. In this section, we state and prove optimality conditions for the general
case, in which the objective can be non-differentiable.

Theorem 9.9. For a convex optimization problem mingcc f(x), ©* € C is an optimal solution if
and only if there exists s € Jf(x*) such that

s'(x—2*)>0 forallzeC.

An immediate corollary of Theorem 9.9 is the following optimality condition for unconstrained
problems.

Corollary 9.10. For a convex optimization problem min,cga f(x), z* € R? is an optimal solution
if and only if 0 € Of (x*).

Corollary 9.10 can be applied to the unconstrained formulation of constrained convex minimization.
We argued that for the differentiable case, the optimality condition is —V f(z*) € Ng(z*) and
0 € {Vf(z*)}+Nc(z*). As 0lc(x) is equivalent to the normal cone N (x), we obtain the following
as a corollary of Corollary 9.10.

Corollary 9.11. For a convex optimization problem min,ec f(x), * € C is an optimal solution
if and only if
0 € 0f(z*) + Nc(z¥).

In this section, we will prove Theorem 9.9 which states the optimality condition for convex mini-
mization. A tool that we need is the separating hyperplane theorem, which is an important result
in convex analysis on its own. We state the separating hyperplane theorem without proof.

Theorem 9.12 (Separating hyperplane theorem). Let C,D C R? be disjoint convex sets, i.e.,
C N D =1, then there exists a € R?\ {0} and b € R such that

a'z>b, foralzeC
a'x<b, forallzeD

Let us prove Theorem 9.9 using Theorem 9.12.

Proof of Theorem 9.9. (<) Assume that there exists s € df(z*) such that s'(z — 2*) > 0 holds
for all x € C. Then it follows from the definition of subgradients that

f(x)—f@*)>s' (z—ax") >0 forallzecC.
This implies that f(z) > f(z*) for all x € C, so z* is optimal.
(=) Let us consider the following two sets.

C={(z—a"t): f(z)— f(a") <t},
D={(x—2a"t): z€C, t<0}.

Since f(z) — f(z*) > 0 for any = € C, these two sets are disjoint. Then by Theorem 9.12, there
exists a € R%, b € R, and ¢ € R such that (a,b) # (0,0) and

a'(x—ax*)+bt>¢, VzeRY flz)— flz*) <t (9.1)
a' (z—x")+bt<ec, Vel t<O. (9.2)
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In (9.2), t can be arbitrarily small, so b > 0. Suppose that b = 0, in which case (9.1) becomes
a'(x—2")0>¢, VareRY flz)— f(z*) <t

Here, x — x* can be A-a where A is an arbitrarily small number. This implies that « = 0. However,
this contradicts the condition that (a,b) # (0,0). Therefore, b > 0. Then, without loss of generality,
we may assume that b = 1. Then taking x = z* and ¢ = 0 in (9.1), we obtain 0 > ¢. Moreover,
taking x = «* and a number that is arbitrarily close to 0 for t, it follows that 0 < ¢. Hence, ¢ = 0.
Then (9.1) and (9.2) become

a'(z—z*)+t>0, VzeRY flz)— f(z*) <t (9.3)
a'(z—2")+t<0, VeeC, t<O0.
Here, we take t = f(z) — f(«*) in (9.3). Then (9.3) becomes
fla) > fa*) —a' (z —a),

which implies that —a € df(z*). Moreover, we take a number that is arbitrarily close to 0 for ¢
in (9.4). Then it becomes a' (z — x*) < 0, which is equivalent to —a' (z — 2*) > 0. Hence, —a is
the desired vector. O

5 Subgradient method

We discussed the gradient descent method for minimizing a differentiable convex function. For
non-differentiable convex functions, we can consider subgradients and use the subgradient method
described as follows.

Algorithm 1 Subgradient method
Initialize 1 € dom(f).
fort=1,...,7 do
Obtain a subgradient g; € 0 f(x¢).
Ter1 = o — Mgy for a step size n, > 0.
end for

We will show that the subgradient method given by Algorithm 1 converges if the subgradients of f
are bounded. Recall that for the differentiable case, the 5 norm of f’s gradient is bounded if and
only if f is Lipschitz continuous.

Theorem 9.13. Let f : R? — R be a function such that |gll2 < L for any g € 0f(x) for every
r €RY Let {xy:t=1,...,T} be the sequence of iterates generated by the subgradient method with
step size n; = ||xy — x*||o/LVT for each t. Then

1 ¢ oy < Lllzs =272
f(T;xt> —f@@) < T
where x* is an optimal solution to min,cga f(x).
Proof. Let = ||z1 — x*|lo/L\/T. Then 1; = n for each t > 1. Note that

|zi1 — 2*(|5 = [lze — mge — 2*||3
= ||z — 2*(|3 — 209, (z¢ — =*) + 1*(|ge]13
< lwe — 2*|I3 — 2n(f(ze) — f(=%)) + *||gell3
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where the inequality follows from f(2*) > f(x;) + g/ (v* — x;). Then it follows that

o o L * . n
flae) = f(a7) < o (lze =215 = e = 2113) + 5 lgell3.
Summing this over t = 1,...,T and dividing the resulting one by T', we obtain

T T
1 * 1 * (12 * (12 n 2
— — < — — — —

72 @0 = 1) < g o =1 = o =" 1E) + 57 3l

< llw =213
- 2nT
_ Lz — 2™

VT

where the second inequality is because ||z741 — 2*||2 > 0 and ||g¢||]2 < L. Lastly, as f is convex,

f 1ZT:»’C —f(w*)<lZf(x)_f(x*)<M
Tt:l t - T ! - VT ’

t=1

Uy
—L
+2

as required. ]

Here, the step size 1) has the order of O(1/+/T) when we run the subgradient method for T iterations.

Then the convergence rate is O(1/v/T), and the number of required iterations to bound the error
by €is O(1/€2).

The important property of the subgradient method is that it is “dimension-free” in the sense that
the algorithm and the convergence rate do not depend on the ambient dimension d. In many
applications, we have a moderate tolerance for the error e while the dimension d is huge. For such
applications, the fact that the subgradient method is dimension-free has a huge advantage.
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