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1 Outline

In this lecture, we study

• Introduction to gradient descent II,

• Gradient descent for smooth functions

2 Introduction to gradient descent

2.1 Backtracking line search

Before we describe the backtracking line search procedure, we characterize descent directions in
terms of the gradient. If f is differentiable, we have

lim
η→0+

f(x+ ηd)− f(x)

η
= d⊤∇f(x) (8.1)

as the limit exists. Then ∇f(x)⊤d measures the rate of decrease of f in direction d at x.

Moreover, the following lemma directly follows from (8.1) that holds for differentiable functions.

Lemma 8.1. Let f : Rd → R be a differentiable function. Then a nonzero vector d ∈ Rd \ {0} is a
descent direction if and only if

∇f(x)⊤d < 0.

For example, −∇f(x) is a descent direction at any x.

Based on the characterization of descent directions in Lemma 8.1, we do backtracking line search
described as follows.

1. Fix parameters 0 < β < 1 and 0 < α < 1.

2. Start with an initial step size η > 0.

3. Until the following condition is satisfied, we shirink η ← βη.

f(x+ ηdt) < f(x) + αη∇f(x)⊤dt.

4. We take the final η and set ηt = η.

2.2 Gradient descent method

The steepest direction of a differentiable function f at a point x can be defined as

argmin
{
∇f(x)⊤d : ∥d∥2 = 1

}
= {−∇f(x)} .

Basically, the steepest direction, which is the direction opposite to the gradient, is the one with
the highest rate of decrease of f at x. Then using −∇f for a descent direction at any point of the
descent method, we obtain the following algorithm, which is commonly known as gradient descent.
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Algorithm 1 Gradient descent method

Initialize x1 ∈ dom(f).
for t = 1, . . . , T do

xt+1 = xt − ηt∇f(xt) for a step size ηt > 0.
end for

Example 8.2. We consider f(x) = 2x2 + 3x : R → R. We already know that the minimizer of f
is given by x∗ = −3/4, but we apply gradient descent to obtain the same conclusion. Let us take
an arbitrary initial point x1. For now, we use a constant step size, i.e. ηt = η for any t ≥ 1.

xt+1 = xt − η∇f(xt)
= xt − η(4xt + 3)

= (1− 4η)xt − 3η

= (1− 4η)((1− 4η)xt−1 − 3η)− 3η

= (1− 4η)2xt−1 − 3η((1− 4η) + 1)

...

= (1− 4η)tx1 − 3η

t−1∑
i=0

(1− 4η)i

= (1− 4η)tx1 − 3η · 1− (1− 4η)t

1− (1− 4η)

= (1− 4η)t
(
x1 +

3

4

)
− 3

4
.

Hence, as long as |1− 4η| < 1, xt converges to −3/4. Note that

f(xT+1)− f(x∗) = O((1− 4η)T ).

Here, the convergence rate is (1− 4η)T , so the error term exponentially decreases. Therefore, after
T = O(log(1/ϵ)) iterations, we obtain

f(xT+1)− f(x∗) ≤ ϵ.

This is often called a “linear convergence”. Here, the term “linear” means that the required number
of iterations is linear in log(1/ϵ).

2.3 Taylor approximation interpretation

Given a differentiable function f : Rd → R and a point xt ∈ dom(f), the first-order Taylor
approximation of f at xt is given by

f(x) ≈ f(xt) +∇f(xt)⊤(x− xt).

If f is convex, then by the first-order characterization of convexity, we know that the first-order
Taylor approximation is a lower bound on f . Moreover, as it provides an approximation of f , we
can try to minimize f(x) ≈ f(xt) +∇f(xt)⊤(x− xt) instead of f . However, the first-order Taylor
approximation is a linear function, which means that

min
x

{
f(xt) +∇f(xt)⊤(x− xt)

}
= −∞.
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Instead of minimizing the first-order Taylor approximation directly, we add a proximity term as
follows.

f(x) ≈ f(xt) +∇f(xt)⊤(x− xt) +
1

2ηt
∥x− xt∥22.

Again, we minimize the approximation instead of f and take a unique minimizer xt+1 as follows.

xt+1 ∈ argmin
x

{
f(xt) +∇f(xt)⊤(x− xt) +

1

2ηt
∥x− xt∥22

}
.

This gives us an iterative algorithm for minimizing f . Here, the proximity term prevents the
solution from being too far away from the initial point xt. The larger ηt is, the closer the solution
xt+1 is to the starting point xt. In fact, there is a closed-form expression for xt+1. Recall that
the approximation with the proximity term is differentiable, and therefore, it follows from the
optimality condition that

∇f(xt) +
1

ηt
(xt+1 − xt) = 0.

This is equivalent to
xt+1 = xt − ηt∇f(xt),

which is precisely the gradient descent iteration.

3 Convergence of gradient descent

In this section, we cover some convergence results for the gradient descent method. Here, the term
“convergence” simply means convergence to an optimal solution or the optimal value. When we
talk about convergence results, we often care about the rate of convergence, which measures how
quickly a given algorithm converges. We discussed above that it is crucial to choose proper step
sizes to achieve convergence. In Example 8.2, we used a constant step size η satisfying |1− 4η| < 1
to guarantee convergence, and if |1− 4η| were greater than 1, gradient descent would not converge.
Moreover, the convergence rate was O(ct) where c = |1 − 4η| < 1, so gradient descent converges
exponentially fast. Based on this, we said that to achieve an ϵ-optimal solution, meaning that the
difference between its value and the optimal value is at most ϵ, we need only O(log(1/ϵ)) iterations.
Basically,

• choosing proper step sizes,

• analyzing convergence rate, and

• analyzing a required number of iterations

will be the main subjects of this section.

3.1 Smooth functions

We say that a differentiable function f : Rd → R is smooth if there exists some β > 0 such that

∥∇f(x)−∇f(y)||2 ≤ β∥x− y∥2
holds for any x, y ∈ Rd. More precisely, we say that f is β-smooth in the norm ∥ · ∥2. Recall that
a convex function f satisfies

f(y) ≥ f(x) +∇f(x)⊤(y − x).

If f is β-smooth, then

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
β

2
∥y − x∥22.
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Theorem 8.3. Let f : Rd → R be β-smooth, and let {xt : t = 1, . . . , T + 1} be the sequence of
iterates generated by gradient descent (Algorithm 1) with ηt = 1/β for each t. Then

f(xT+1)− f(x∗) ≤ ∥x1 − x∗∥22
2βT

where x∗ is an optimal solution to minx∈Rd f(x).

Here, x1 and x∗ are some fixed vectors, which means that ∥x1 − x∗∥2 is a constant. Moreover, the
smoothness parameter β is also a constant. Hence, the convergence rate is O(1/T ). Therefore,
after T = O(1/ϵ) iterations, we have

f(xT+1)− f(x∗) ≤ ϵ.
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