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1 Outline

In this lecture, we study

e Optimality conditions for convex minimization,
e Normal cones and projection,

e Introduction to gradient descent,

2 Optimality conditions for convex minimization

2.1 Local optimality implies global optimality
A feasible solution x* is locally optimal to the optimization problem

minimize f(z)

subject to z € C
if there exists R > 0 such that
f(z*) =min{f(z): z€C, ||z —z"|| < R}.
Theorem 7.1. Any locally optimal solution to a convex optimization problem is (globally) optimal.

Proof. Suppose for a contradiction that a locally optimal solution z* to a convex optimization
problem mingcc f(x) is not globally optimal. Then there exists y € C such that f(y) < f(z*). By
the local optimality of z*, there exists R > 0 such that f(2*) = min{f(z): z € C, |z — 2*| < R},
which implies that ||y — z*|| > R. Let z be defined as

By
zZ =X = y—x ).
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SInce z is a convex combination of * and y, z € C, and moreover,
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However, we have ||z — 2*|| = R, contradicting the assumption that f(z*) = min{f(x) : = €
C, ||z —z*|| < R}. O

For nonconvex problems, a locally optimal solution is not necessarily an optimal solution, illustrated
in Figure 7.1.



Figure 7.1: Local optimal solution that is not optimal

2.2 First-order optimality condition

Next we establish an optimality condition for convex optimization problems with a differentiable
objective.

Theorem 7.2. For a convex optimization problem of the form (P) with f differentiable, z* € C' is
an optimal solution if and only if

Vi) (x—2*)>0 forallzecC.

We will prove this later in the course, when we discuss the general case allowing nondifferentiable
objectives. By Theorem 7.2, a sufficient condition for optimality is that V f(x*) = 0. This, in fact,
is a necessary condition for the unconstrained case. Theorem 7.2 directly implies the following
condition for the unconstrained case.

Theorem 7.3. z* € R is optimal to min,cpa f(x) if and only if
Vf(x*)=0.

Proof. (<) If Vf(z*) = 0, then it trivially holds that Vf(z*)T (z —2*) > 0 for z € R%. Then z* is
optimal due to Theorem 7.2.

(=) Let z = 2* — aVf(z*). Then we must have —aVf(z*)||3 > 0, implying in turn that
|V f(z*)|l2 =0 and thus V f(z*) = 0. -

Figure 7.2 describes the optimality conditions for functions from R to R.
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Figure 7.2: Optimality of univariate convex functions

Figure 7.3 describes the optimality conditions for functions from R? to R. Basically, a solution z*
is optimal if we cannot move further from z* in C' in the direction of decreasing f. If V f(z*) =0,
then z* is optimal.



Figure 7.3: Optimality of bi-variate convex functions

Example 7.4. Consider the following equality-constrained problem.
minimize f(z)
subject to Az =1b

where f is convex and A, b are matrices of appropriate dimension. Then a solution z* is optimal
if and only if Vf(z*)" (2 — 2*) > 0 for all = such that Az = b. Note that the latter condition is
equivalent to V f (x*)Tv = 0 for all v in the null space of A. Since the orthogonal complement of
null(A) is the column space of AT, we have Vf(z*) = ATu for some u.

The normal cone of C' at x € C' is defined as

Ne(z)={geR?: g"(y—z) <0forallye C}.

Figure 7.4 shows some examples.
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Figure 7.4: Optimality of univariate convex functions

Then the optimality condition in Theorem 7.2 is equivalent to
—Vf(x*) € Ne(z*) <+ 0eVf(z")+ No(z").

Later in the course, we will give a direct proof for this equivalent condition.
2.3 Projection

We consider the problem of projecting a point p to a convex set C, that is to find a point z € C
minimizing the distance to p.
minimize ||z — p||3

subject to z € C
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Let Proj-(p) denote the projection of p to C. Then Proj,(p) is an optimal solution to the opti-
mization problem, so we have

2(Projo(p) —p) " (z — Projo(p)) >0 for all z € C
because the gradient of ||z — pl|3 is 2(z — p). Equivalently,

(Projco(p) — p, Projo(p) —z) <0 forall z € C.

Next let us consider two points u, v and their projections onto C, given by Proj-(u) and Projs(v),
respectively. Then we have

(Projc(u) = u, Projc(u) — Projo(v))
(Projc(v) — v, Projc(v) — Projc(u))

Adding these two inequalities, we obtain
[Proje(u) — Proja(v)|3 — (u — v, Proja(u) — Proja(v)) < 0.
Then it follows from the Cauchy-Schwarz inequality that

[Projc(u) = Proje(v)l2 < [lu = vlla.

3 Gradient descent

3.1 Generic descent method

Let f:R? — R be a function. Given a point x € R% we say that a nonzero vector d € R%\ {0} is
a descent direction of f at x if there exists some € > 0 such that

f(z+nd) < f(x)

for any 0 < n <e.

«
[
[
|
(

A0 A
Figure 7.5: Illustration of descent directions

Hence, moving towards a descent direction d can decrease the function value, but how much we
move along the direction, captured by n, is important. We often call n a step size. Based on descent
directions and proper step sizes, we may develop the following algorithm for minimizing a function.
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Algorithm 1 Generic descent method

Initialize z; € dom(f).
fort=1,...,7T do

Fetch a descent direction d;.

Tep1 = ¢ + nedy for a step size ny > 0.
end for

Whether the descent method, given by Algorithm 1, converges or not depends on how we choose

the step sizes n; for t > 1.

Figure 7.6: Different sequences of step sizes and convergence behavior

Exact line search We choose the step size 7 as

ne = argmin f(z; 4 ndy).
n=>0

Here, choosing the step size this way requires solving an optimization problem, which is often an
expensive procedure.

Backtracking line search Before we describe the backtracking line search procedure, we char-
acterize descent directions in terms of the gradient. If f is differentiable, we have

i &+ 0d) — f(z)

_ T
i ” =d Vf(x) (7.1)

as the limit exists. Then V f(x)"d measures the rate of decrease of f in direction d at x.

Moreover, the following lemma directly follows from (7.1) that holds for differentiable functions.

Lemma 7.5. Let f : RY — R be a differentiable function. Then a nonzero vector d € R\ {0} is a
descent direction if and only if
Vfi(z)'d <o.

For example, —V f(z) is a descent direction at any x.

Based on the characterization of descent directions in Lemma 7.5, we do backtracking line search
described as follows.

1. Fix parameters 0 < <1 and 0 < o < 1.

2. Start with an initial step size n > 0.



3. Until the following condition is satisfied, we shirink 7 < 7.
fla+nd) < f(z) + anV f(z) " dp.

4. We take the final n and set n, = 7.
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