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1 Outline

In this lecture, we study

• Optimality conditions for convex minimization,

• Normal cones and projection,

• Introduction to gradient descent,

2 Optimality conditions for convex minimization

2.1 Local optimality implies global optimality

A feasible solution x∗ is locally optimal to the optimization problem

minimize f(x)

subject to x ∈ C
(P)

if there exists R > 0 such that

f(x∗) = min {f(x) : x ∈ C, ∥x− x∗∥ ≤ R} .

Theorem 7.1. Any locally optimal solution to a convex optimization problem is (globally) optimal.

Proof. Suppose for a contradiction that a locally optimal solution x∗ to a convex optimization
problem minx∈C f(x) is not globally optimal. Then there exists y ∈ C such that f(y) < f(x∗). By
the local optimality of x∗, there exists R > 0 such that f(x∗) = min{f(x) : x ∈ C, ∥x− x∗∥ ≤ R},
which implies that ∥y − x∗∥ > R. Let z be defined as

z = x∗ +
R

∥y − x∗∥
(y − x∗).

SInce z is a convex combination of x∗ and y, z ∈ C, and moreover,

f(z) ≤ R

∥y − x∗∥
f(y) +

(
1− R

∥y − x∗∥

)
f(x∗) < f(x∗)

However, we have ∥z − x∗∥ = R, contradicting the assumption that f(x∗) = min{f(x) : x ∈
C, ∥x− x∗∥ ≤ R}.

For nonconvex problems, a locally optimal solution is not necessarily an optimal solution, illustrated
in Figure 7.1.
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Figure 7.1: Local optimal solution that is not optimal

2.2 First-order optimality condition

Next we establish an optimality condition for convex optimization problems with a differentiable
objective.

Theorem 7.2. For a convex optimization problem of the form (P) with f differentiable, x∗ ∈ C is
an optimal solution if and only if

∇f(x∗)⊤(x− x∗) ≥ 0 for all x ∈ C.

We will prove this later in the course, when we discuss the general case allowing nondifferentiable
objectives. By Theorem 7.2, a sufficient condition for optimality is that ∇f(x∗) = 0. This, in fact,
is a necessary condition for the unconstrained case. Theorem 7.2 directly implies the following
condition for the unconstrained case.

Theorem 7.3. x∗ ∈ Rd is optimal to minx∈Rd f(x) if and only if

∇f(x∗) = 0.

Proof. (⇐) If ∇f(x∗) = 0, then it trivially holds that ∇f(x∗)⊤(x− x∗) ≥ 0 for x ∈ Rd. Then x∗ is
optimal due to Theorem 7.2.

(⇒) Let x = x∗ − α∇f(x∗). Then we must have −α∥∇f(x∗)∥22 ≥ 0, implying in turn that
∥∇f(x∗)∥2 = 0 and thus ∇f(x∗) = 0.

Figure 7.2 describes the optimality conditions for functions from R to R.

Figure 7.2: Optimality of univariate convex functions

Figure 7.3 describes the optimality conditions for functions from R2 to R. Basically, a solution x∗

is optimal if we cannot move further from x∗ in C in the direction of decreasing f . If ∇f(x∗) = 0,
then x∗ is optimal.
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Figure 7.3: Optimality of bi-variate convex functions

Example 7.4. Consider the following equality-constrained problem.

minimize f(x)

subject to Ax = b

where f is convex and A, b are matrices of appropriate dimension. Then a solution x∗ is optimal
if and only if ∇f(x∗)⊤(x − x∗) ≥ 0 for all x such that Ax = b. Note that the latter condition is
equivalent to ∇f(x∗)⊤v = 0 for all v in the null space of A. Since the orthogonal complement of
null(A) is the column space of A⊤, we have ∇f(x∗) = A⊤u for some u.

The normal cone of C at x ∈ C is defined as

NC(x) = {g ∈ Rd : g⊤(y − x) ≤ 0 for all y ∈ C}.

Figure 7.4 shows some examples.

Figure 7.4: Optimality of univariate convex functions

Then the optimality condition in Theorem 7.2 is equivalent to

−∇f(x∗) ∈ NC(x
∗) ↔ 0 ∈ ∇f(x∗) +NC(x

∗).

Later in the course, we will give a direct proof for this equivalent condition.

2.3 Projection

We consider the problem of projecting a point p to a convex set C, that is to find a point x ∈ C
minimizing the distance to p.

minimize ∥x− p∥22
subject to x ∈ C
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Let ProjC(p) denote the projection of p to C. Then ProjC(p) is an optimal solution to the opti-
mization problem, so we have

2(ProjC(p)− p)⊤(x− ProjC(p)) ≥ 0 for all x ∈ C

because the gradient of ∥x− p∥22 is 2(x− p). Equivalently,

⟨ProjC(p)− p, ProjC(p)− x⟩ ≤ 0 for all x ∈ C.

Next let us consider two points u, v and their projections onto C, given by ProjC(u) and ProjC(v),
respectively. Then we have

⟨ProjC(u)− u, ProjC(u)− ProjC(v)⟩ ≤ 0,

⟨ProjC(v)− v, ProjC(v)− ProjC(u)⟩ ≤ 0.

Adding these two inequalities, we obtain

∥ProjC(u)− ProjC(v)∥22 − ⟨u− v, ProjC(u)− ProjC(v)⟩ ≤ 0.

Then it follows from the Cauchy-Schwarz inequality that

∥ProjC(u)− ProjC(v)∥2 ≤ ∥u− v∥2.

3 Gradient descent

3.1 Generic descent method

Let f : Rd → R be a function. Given a point x ∈ Rd, we say that a nonzero vector d ∈ Rd \ {0} is
a descent direction of f at x if there exists some ϵ > 0 such that

f(x+ ηd) < f(x)

for any 0 < η ≤ ϵ.

Figure 7.5: Illustration of descent directions

Hence, moving towards a descent direction d can decrease the function value, but how much we
move along the direction, captured by η, is important. We often call η a step size. Based on descent
directions and proper step sizes, we may develop the following algorithm for minimizing a function.
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Algorithm 1 Generic descent method

Initialize x1 ∈ dom(f).
for t = 1, . . . , T do

Fetch a descent direction dt.
xt+1 = xt + ηtdt for a step size ηt > 0.

end for

Whether the descent method, given by Algorithm 1, converges or not depends on how we choose
the step sizes ηt for t ≥ 1.

Figure 7.6: Different sequences of step sizes and convergence behavior

Exact line search We choose the step size ηt as

ηt = argmin
η≥0

f(xt + ηdt).

Here, choosing the step size this way requires solving an optimization problem, which is often an
expensive procedure.

Backtracking line search Before we describe the backtracking line search procedure, we char-
acterize descent directions in terms of the gradient. If f is differentiable, we have

lim
η→0+

f(x+ ηd)− f(x)

η
= d⊤∇f(x) (7.1)

as the limit exists. Then ∇f(x)⊤d measures the rate of decrease of f in direction d at x.

Moreover, the following lemma directly follows from (7.1) that holds for differentiable functions.

Lemma 7.5. Let f : Rd → R be a differentiable function. Then a nonzero vector d ∈ Rd \ {0} is a
descent direction if and only if

∇f(x)⊤d < 0.

For example, −∇f(x) is a descent direction at any x.

Based on the characterization of descent directions in Lemma 7.5, we do backtracking line search
described as follows.

1. Fix parameters 0 < β < 1 and 0 < α < 1.

2. Start with an initial step size η > 0.
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3. Until the following condition is satisfied, we shirink η ← βη.

f(x+ ηdt) < f(x) + αη∇f(x)⊤dt.

4. We take the final η and set ηt = η.
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