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1 Outline

In this lecture, we study

• Conic programming,

• Conic duality,

• Second-order cone programming.

• Convex optimization hierarchy.

2 Conic programming

Recall that a linear program (LP) is an optimization problem with a linear objective and a system
of linear inequality constraints, as follows.

minimize c⊤x

subject to Ax ≥ b.
(LP)

Here, if the rows of A are a⊤1 , . . . , a
⊤
n and the components of b are b1, . . . , bn, then the linear system

Ax ≥ b consists of linear inequality constraints a⊤1 x ≥ b1, . . . , a
⊤
n x ≥ bn. Note that Ax itself is a

column vector whose components are a⊤1 x, . . . , a
⊤
n x. Basically, the arithmetic “≥” compares two

column vectors Ax and b coordinatewise.

Ax ≥ b is equivalent to Ax− b ≥ 0, which means that each component of the column vector Ax− b
is nonnegative. We know that Rn

+ is the nonnegative orthant, that is, the set of vectors all of whose
coordinates are nonnegative. Hence, Ax − b ≥ 0 is equivalent to Rn

+. Then the following is an
equivalent expression for the above linear program.

minimize c⊤x

subject to Ax− b ∈ Rn
+.

Let us take a closer look at the nonnegative orthant Rn
+. It satisfies the following properties.

1. Rn
+ is a convex cone.

2. Rn
+ is pointed, which means that if v ∈ Rn

+ and −v ∈ Rn
+, then it must be that v = 0.

In fact, Rn
+ is not just a pointed convex cone. There are other important properties of Rn

+.

3. Rn
+ is closed, which means that for any convergent sequence {vn}n∈N contained in Rn

+, its
limit limn→∞ vn also belongs to Rn

+.

4. Rn
+ has a nonempty interior. Equivalently, Rn

+ contains an interior point. A vector v is an
interior point of a set K if there exists an open ball around v which is fully contained in K.
Then the interior of a set K, denoted int(K), is defined as the set of all its interior points.
The interior of Rn

+ is Rn
++, the positive orthant.
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In summary, the nonnegative orthant Rn
+ is a pointed and closed convex cone with a nonempty

interior. In fact, there are other closed convex cones that are pointed and have a nonempty interior.
For example,

• The Lorentz cone.

{(x1, . . . , xn−1, xn)
⊤ ∈ Rn : ∥(x1, . . . , xn−1)

⊤∥2 ≤ xn}.

Other equivalent names include the second-order cone, the ice-cream cone, and the ℓ2-norm
cone. Its interior is given by

{(x1, . . . , xn−1, xn)
⊤ ∈ Rn : ∥(x1, . . . , xn−1)

⊤∥2 < xn}.

• The positive semidefinite cone.

{S ∈ Sd : x⊤Sx ≥ 0 for all x ∈ Rd}.

Its interior is the positive definite cone, the set of all positive definite matrices.

A conic program is an optimization problem defined with a pointed and closed convex cone K with
a nonempty interior, as follows.

minimize c⊤x

subject to Ax− b ∈ K.
(CP)

Again, when K = Rn
+, the problem reduces to a linear program. As we use the arithmetic “≥” to

indicate that a vector belongs to Rn
+, we use notation “≥K” to indicate that a vector belongs to

cone K. Basically, Ax− b ∈ K is equivalent to Ax− b ≥K 0 and Ax ≥K b.

Example 6.1. When K is the second-order cone, the conic program (CP) is referred to as a second-
order cone program. When K is the positive semidefinite cone, (CP) is a semidefinite program.

2.1 Conic duality

We know that the dual of the linear program (LP) is given by

maximize b⊤y

subject to A⊤y = c

y ≥ 0.

(dual-LP)

Let us see how to derive the dual! Note that for any y ≥ 0 (or y ∈ Rn
+) and system Ax ≥ b, we

have y⊤(Ax− b) ≥ 0 because y ≥ 0 and Ax− b ≥ 0. Then it follows that

y⊤Ax ≥ y⊤b.

If y further satisfies
A⊤y = c,

then we have
y⊤Ax = c⊤x ≥ y⊤b = b⊤y.
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In summary, if we take x ∈ Rd satisfying Ax ≥ b and y ∈ Rn with y ≥ 0 and A⊤y = c, then
c⊤x is always lower bounded by b⊤y. Then we can try to find the best possible lower bound by
maximizing the value of b⊤y, which is precisely what (dual-LP) does!

Following the basic idea behind obtaining the dual linear program, we may obtain and define the
dual of the conic program (CP). The dual cone of K ⊆ Rn is defined as

K∗ =
{
y ∈ Rn : y⊤x ≥ 0 ∀x ∈ K

}
.

The dual cone of the nonnegative orthant Rd
+ is Rd

+ itself.

Example 6.2. The dual cone of the positive semidefinite cone Sd+ is given byX ∈ Rd×d : tr(X⊤S) =
d∑

i=1

d∑
j=1

XijSij ≥ 0 ∀S ∈ Sd+

 .

In fact, the positive semidefinite cone Sd+ is self-dual, meaning that its dual cone is itself.

Theorem 6.3 (See Theorem 2.3.1 in [BTN01]). Let K be a pointed and closed convex cone with
nonempty interior. Then its dual cone K∗ is also a pointed and closed convex cone with nonempty
interior. Moreover, (K∗)∗ = K.

Let us see how to derive and define the dual of the conic program!

(1) Take x such that Ax− b ∈ K and y ∈ K∗. Then y⊤(Ax− b) ≥ 0, and therefore,

y⊤Ax ≥ y⊤b.

(2) If y ∈ K∗ further satisfies A⊤y = c, then

c⊤x = y⊤Ax ≥ y⊤b = b⊤y.

(3) Then

maximize b⊤y

subject to A⊤y = c

y ∈ K∗
(dual-CP)

provides a lower bound on the value of (CP). Here, (dual-CP) is the dual conic program
of (CP).

Taking the dual of a maximization problem is similar; the dual will give an upper bound on the
problem.

Example 6.4. We consider the following semidefinite program.

maximize
m∑
ℓ=1

bℓyℓ

subject to
m∑
ℓ=1

yℓAℓ ⪯ C
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To obtain its dual, we take a positive semidefinite matrix X. As the positive semidefinite cone Sd+
is self-dual, it follows that

tr

(
X⊤

(
C −

m∑
ℓ=1

yℓAℓ

))
= tr(C⊤X)−

m∑
ℓ=1

yℓ · tr((Aℓ)
⊤X) ≥ 0.

If X satisfies
tr((Aℓ)

⊤X) = bℓ for ℓ = 1, . . . ,m,

then

tr(C⊤X) ≥
m∑
ℓ=1

yℓ · tr((Aℓ)
⊤X) =

m∑
ℓ=1

bℓyℓ.

This means that

minimize tr(C⊤X)

subject to tr((Aℓ)
⊤X) = bℓ for ℓ = 1, . . . ,m

X ⪰ 0

provides an upper bound on the first semidefinite program.

2.2 Conic duality theorem

We have shown that the value of the conic program (CP) is lower bounded by the value of its dual,
given by (dual-CP). What is striking is that the two values coincide under some conditions! For
the case of linear programming, this is known as the strong LP duality theorem. To be precise,
the value of (LP) and that of (dual-LP) are the same if (LP) is feasible and bounded. It turns out
that we may extend this strong duality result to general conic programs.

We have already observed that the weak duality for LP extends to conic programming. Formally,

Theorem 6.5. The optimal value of (dual-CP) is a lower bound on that of (CP).

Before we state the strong duality theorem for conic programming, we need to define the notion of
strict feasibility.

Definition 6.6. We say that a solution x is strictly feasible to (CP) if Ax−b belongs to the interior
of K. When that is the case, we write it as

Ax− b >K 0 or Ax >K 0.

Moreover, we say that (CP) is strictly feasible if it has a strictly feasible solution.

For example, x is strictly feasible to (LP) if Ax > b. Now we are ready to state the following
duality result.

Theorem 6.7 (See Theorem 2.4.1 in [BTN01]). The following statements hold for (CP) and (dual-CP).

1. If (CP) is strictly feasible and bounded, then (dual-CP) is solvable and the optimal values
of (CP) and (dual-CP) are the same.

2. If (dual-CP) is strictly feasible and bounded, then (CP) is solvable and the optimal values
of (CP) and (dual-CP) are the same.

We will learn the notion of Lagrangian duality later in the course, and the strict feasibility condition
is analogous to the Slater condition.
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3 Second-order cone programming

A second-order cone program (SOCP) is an optimization problem of the following form:

minimize f⊤x

subject to ∥Aix+ bi∥2 ≤ c⊤i x+ di for i = 1, . . . ,m,

Ex = g.

(SOCP)

Exercise 6.8. Prove that (SOCP) is a conic program.

3.1 Example: chance-constrained linear programming

We consider a chance-constrained program (CCP) given as follows.

minimize c⊤x

subject to P
(
a⊤x ≤ b

)
≥ 1− ϵ

(CCP)

where the constraint vector a is random. The problem is to find a solution x satisfying the constraint
a⊤x ≤ b with probability at least 1− ϵ. For example, we can formulate the portfolio optimization
as (CCP).

minimize p⊤x

subject to P
(
r⊤x ≥ 1 + α

)
≥ 1− ϵ,

1⊤x = 1

where pi is the unit price of financial asset i ∈ [d], and ri is the random return of asset i ∈ [d]. The
goal of the problem is to find a portfolio x whose return is at least 1 + α with probability at least
1− ϵ while minimizing the unit price of the portfolio.

When the coefficient vector a in (CCP) follows the multivariate Gaussian distribution with mean
ā and covariance Σ, we can reformulate it as a second-order cone program. Let u = a⊤x. Then u
is a random variable with mean ū = ā⊤x and variance σ2 = x⊤Σx. Then P

(
a⊤x ≤ b

)
≥ 1− ϵ can

be rewritten as

P
(
u− ū

σ
≤ b− ū

σ

)
≥ 1− ϵ. (6.1)

Here, u− ū/σ follows the Gaussian distribution with mean 0 and variance 1 whose cumulative
distribution function is given by Φ, i.e.

Φ(z) =
1√
2π

∫ z

−∞
e−t2/2dt.

Then (6.1) is equivalent to

Φ

(
b− ū

σ

)
≥ 1− ϵ

and therefore is equivalent to

b− ū

σ
=

b− ā⊤x

∥Σ1/2x∥2
≥ Φ−1(1− ϵ).
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Hence, (CCP) can be equivalently written as

minimize c⊤x

subject to ā⊤x+Φ−1(1− ϵ)∥Σ1/2x∥2 ≤ b.

3.2 Example: convex quadratic programming

Recall that a convex quadratic program can be rewritten as follows.

minimize t

subject to t ≥ 1

2
x⊤Qx+ p⊤x.

Here, the constraint t ≥ 1
2x

⊤Qx + p⊤x can be written as a second-order cone constraint. Recall
that for any positive semidefinite matrix Q, there exists a matrix P such that Q = P⊤P . Then
t ≥ 1

2x
⊤Qx+ p⊤x is equivalent to

x⊤P⊤Px ≤ 2t− 2p⊤x.

Note that the left-hand side equals ∥Px∥22 and that

2t− 2p⊤x = (t− p⊤x+ 1/2)2 − (t− p⊤x− 1/2)2.

This implies that x⊤P⊤Px ≤ 2t− 2p⊤x is equivalent to

∥Px∥22 + (t− p⊤x− 1/2)2 ≤ (t− p⊤x+ 1/2)2,

which is equivalent to ∥∥∥∥( Px
t− p⊤x− 1/2

)∥∥∥∥
2

≤ t− p⊤x+ 1/2.

Therefore, a convex quadratic program is a second-order cone program.

3.3 Reduction to semidefinite programming

In fact, (SOCP) is an instance of semidefinite programming.

Lemma 6.9. Let y ∈ Rd. Then ∥y∥2 ≤ s is equivalent to(
s y⊤

y s · I

)
⪰ 0

Proof. (⇐) Note that

(∥y∥2,−y⊤)

(
s y⊤

y s · I

)(
∥y∥2
−y

)
= 2(s∥y∥22 − y⊤y∥y∥2) ≥ 0,

implying in turn that s ≥ ∥y∥2.
(⇒) Let u ∈ R and v ∈ Rd. Then

(u, v⊤)

(
s y⊤

y s · I

)(
u
v

)
= u2s+ 2uy⊤v + sv⊤v

≥ ∥y∥2(u2 + ∥v∥22) + 2uy⊤v

≥ ∥y∥2(u2 + ∥v∥22)− 2|u| · ∥y∥2 · ∥v∥2
≥ 0
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where the first inequality comes from the assumption that s ≥ ∥y∥2 and the second and third
inequalities are due to the Cauchy-Schwarz inequality. Therefore, the matrix is positive semidefinite
as required.

By Lemma 6.9, any second-order cone constraint can be written as an SDP constraint.

4 Convex optimization hierarchy

We have discussed

• Linear programming (LP),

• Quadratic programming (QP),

• Semidefinite programming (SDP),

• Conic programming,

• Second-order cone programming (SOCP).

The problem classes form a hierarchy described in Figure 6.1

Figure 6.1: Hierarchy of classes of convex optimization problems
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