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1 Outline

In this lecture, we study

• Convex optimization applications (LASSO, Facility location),

• Classes of convex optimization problems (LP, QP, SDP),

• Convex optimization hierarchy.

2 Convex optimization applications II

2.1 LASSO (least absolute shrinkage and selection operator)

Based on n data points (x1, y1), . . . , (xn, yn), we want to find a linear rule

y = β>x

that best represents the relationship between x and y. The goal is to find β minimizing the “mean
squared error”, given by

min
β

1

n

n∑
i=1

(yi − β>xi)2 = min
β

1

n
‖y −Xβ‖22

where the rows of X are x>1 , . . . , x
>
n .

However, there are issues such as highly collinear covariates and overfitting. Motivated by this,
LASSO is a regression method that achieves variable selection and regularization. The LASSO
problem is to solve

minimize
1

n
‖y −Xβ‖22

subject to ‖β‖1 ≤ t

where t is a parameter determining the degree of regularization. Basically, the problem induces
sparsity in β. The problem is often transformed into the Lagrangian form, given as follows.

min
β

1

n
‖y −Xβ‖22 + λ‖β‖1

where λ is set to control the degree of regularization.

2.2 Facility location

Given the locations of n households x1, . . . , xn ∈ Rd, we wish to build a hospital covering the
households. A desired location would minimize the longest distance to a household. The problem
can be formulated as

min
x

max
i=1,...,n

‖x− xi‖.
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3 Convex optimization hierarchy

On top of the applications we studied, there are many interesting “classes” of convex optimization
problems. In this lecture, we consider them in this section, and specifically, we discuss

• Linear programming (LP),

• Quadratic programming (QP),

• Semidefinite programming (SDP),

• Conic programming,

• Second-order cone programming (SOCP).

In fact, these problems are closely related, and in fact, the problem classes form a hierarchy de-
scribed in Figure 5.1

Figure 5.1: Hierarchy of classes of convex optimization problems

4 Linear programming

A linear program (LP) is an optimization problem of the following form.

minimize c>x

subject to Ax ≥ b
(P )

where c>x is the linear objective function and Ax ≥ b is the system of linear constraints a>1 x ≥
b1, . . . , a

>
n x ≥ bn, i.e., a>1 , . . . , a

>
n are the rows of A and b = (b1, . . . , bn)>. Note that the feasible

region P = {x ∈ Rd : Ax ≥ b} is a polyhedron, the intersection of half-spaces {x ∈ Rd : a>i x ≥ bi}
for i = 1, . . . , n. Hence, the linear program is the problem of finding a point in a polyhedron that
minimizes a linear function. Figure 5.2 describes a linear program with 2 variables.

There are several equivalent forms of (P ). First, we can transform (P ) to a linear program all of
whose variables are nonnegative.

minimize c>x

subject to Ax ≥ b
x ≥ 0.

(P ′)
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Figure 5.2: Geometric picture of a linear program

How? For each variable xi, we separate its positive part and negative part, by setting xi = x+i −x
−
i

with x+i , x
−
i ≥ 0. Then (P ) is equivalent to

minimize c>x+ − c>x−
subject to Ax+ −Ax− ≥ b

x+, x− ≥ 0.
=

minimize

[
c
−c

]> [
x+

x−

]
subject to

[
A
−A

] [
x+

x−

]
≥ b[

x+

x−

]
≥ 0.

Second, (P ) can be further transformed to a linear program all of whose constraints are equlities
as the following.

minimize c>x

subject to Ax = b

x ≥ 0.

(P ′′)

This is often called the standard form. We obtain the form by adding slack variables to (P ′) as
follows.

minimize c>x

subject to Ax− s = b

x, s ≥ 0.

minimize c>x
subject to Ax− s = b

x, s ≥ 0.
=

minimize

[
c
0

]> [
x
s

]
subject to

[
A
−I

] [
x
s

]
= b[

x
s

]
≥ 0.

3



4.1 LP duality

The dual linear program of (P ) is given by

maximize b>y

subject to A>y = c,

y ≥ 0.

(D)

The dual linear program of the standard form, given in (P ′′) is

maximize b>y

subject to A>y ≤ c,
(D′′)

The weak LP duality states that OPT(P ) ≥ OPT(D), where OPT(P ) and OPT(D) denote the
optimal values of (P ) and (D), respectively. The strong LP duality states that if (P ) is feasible
and bounded, then (D) is feasible and bounded and OPT(P ) = OPT(D).

4.2 Example: facility location

Recall that the facility location problem can be modeled as follows.

minimize max
i=1,...,n

‖x− xi‖1

subject to x ∈ Rd

where x1, . . . , xn ∈ Rd are the locations of households and we use the `1 norm for the norm ‖ · ‖. In
fact, the problem is equivalent to a linear program. Why? We first introduce an auxiliary variable
to replace the objective. Then the problem is equivalent to

minimize t

subject to t ≥ max
i=1,...,n

‖x− xi‖1.

Basically, minimizing t forces minimizing the original objective maxi=1,...,n ‖x − xi‖1. Moreover,
t ≥ maxi=1,...,n ‖x− xi‖1 is equvialent to imposing t ≥ ‖x− xi‖1 for i = 1, . . . , n. The next step is
to replace t ≥ ‖x− xi‖1 by a set of linear inequalities. Note that

‖x− xi‖1 =

d∑
j=1

|xj − xij |

where x = (x1, . . . , xd)
> and xi = (xi1, . . . , x

i
d)
>. By introducing an auxiliary variable sij for each

absolute value term |xj − xij |, we replace t ≥
∑d

j=1 |xj − xij | by t ≥
∑d

j=1 sij and sij ≥ |xj − xij |.
Moreover, sij ≥ |xj − xij | is equivalent to sij ≥ xj − xij ≥ −sij . Therefore, we obtain

minimize t

subject to t ≥
d∑
j=1

sij for i = 1, . . . , n,

sij ≥ xj − xij ≥ −sij for i = 1, . . . , n, j = 1, . . . , d

which is a linear program.
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4.3 History

Linear programming was first devised by Kantorovich in 1939 [Kan39]. Then LP was used to
model problems in military operations research duing World War II, and during that time, Dantzig
was part of Project SCOOP (Scientific Computation of Optimum Programs) arranged for Pen-
tagon [CET16]. Dantzig developed the famous “Simplex method” for solving linear programs1.
The following quote is from his note on the method written in 1985 [Dan85].

Origins of the Simplex Method, Summer 1947

The first idea that would occur to anyone as a technique for solving a linear program,
aside from the obvious one of moving through the interior of the convex set, is that
of moving from one vertex to the next along edges of the polyhedral set. I discarded
this idea immediately as impractical in higher dimensional spaces. It seemed intuitively
obvious that there would be far too many vertices and edges to wander over in the
general case for such a method to be efficient.

When Hurwicz came to visit me at the Pentagon in the summer of 1947,
I told him how I had discarded this vertex-edge approach as intuitively
inefficient for solving LP. I suggested Instead that we study the problem in
the geometry of columns rather than the usual one of the rows – column
geometry incidently was the one I had used in my Ph.D. thesis on the
Neyman-Pearson Lemma. We dubbed the new method “climbing the bean
pole.” It looked to me efficient.

I felt sufficiently confident in this special case of what later became known as the simplex
method that I proceeded to modify it so that it would work for linear programs without
a convexifying row. I also developed a variant for getting a starting feasible solution
called Phase I. It was then that I discovered that the method was really the previously
discarded vertex-edge procedure in disguise (except for an added criterion for selecting
the edge on which to move). Apparently, in one geometry the simplex method
looks efficient while in another it appeared to be very inefficient! Thus the
simplex method was born in August 1947.

The simplex method works really well in practice! However, Klee and Minty found a pathological
instance for the simplex method, requiring exponential time to solve if the method is used [KM72].
Later, Khachiyan announced in 1979 that he proved that the Ellipsoid method, proposed by Naum
Z. Shor [Sho77] (also Yudin and Nemirovski [YN76]), solves linear programming in (weakly) polyno-
mial time! [Kha79], and the full proof was published in 1980 [Kha80]. Although this result is indeed
a breakthrough in theory, it is a general perception that the method is not as practical. Later,
Karmarkar proposed an interior-point algorithm, which is much faster than the ellipsoid method
and is proved to run in polynomial time [Kar84]. There have been far greater improvements in
linear programming, both in practice and theory, and it is still one of the central research topics in
optimization.

The following is a list of recent progress on fast algorithms for linear programming.

• (Khachiyan, 1980 [Kha80]) O(n6) time ellipsoid method.

• (Vaidya, FOCS1989 [Vai89]) O(n2.5) time implementation of Karmarkar’s method.

1I was not able to find a specific document announcing the result in 1947.
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• (Cohen, Lee and Song, STOC2019 [CLS19]) O∗(nω + n2.5−α/2 + n2+1/6) time.

• (Jiang, Song, Weinstein, and Zhang, STOC2021 [JSWZ21]) O∗(nω+n2.5−α/2 +n2+1/18) time.

Here, n is the number of variables, O∗ hides no(1) factors, ω is the exponent of matrix multiplication,
and α is the dual exponent of matrix multiplication. Currently, there exist algorithms that achieve
ω ∼ 2.38 and α ∼ 0.31, and it is believed that ω ' 2 and α ' 1.

5 Quadratic programming

A quadratic program (QP) is an optimization problem of the following form.

minimize
1

2
x>Qx+ p>x

subject to Ax ≥ b
(QP)

The quadratic program is convex only if Q is positive semidefinite.

5.1 Example: portfolio optimization

We studied the following formulation of portfolio optimization.

maximize µ>x− γx>Σx

subject to 1>x = 1,

x ∈ Rn+

where γ > 0 and Σ is a covariance matrix that is positive semidefinite. Note that

max {f(x) : x ∈ C} = −min {−f(x) : x ∈ C} .

Therefore, the formulation is equivalent to

minimize γx>Σx− µ>x
subject to 1>x = 1

x ≥ 0

which is clearly a quadratic program.

5.2 Example: support vector machine

The next example is the formulation of support vector machine.

min
w,b

λ‖w‖22 +
1

n

n∑
i=1

max{0, 1− yi(w>xi − b)}.

Here, ‖w‖22 = w>w = w>Iw where I is the identity matrix, and therefore, ‖w‖22 is a quadratic
term. Moreover, the max terms in the objective can be replaced by adding some auxiliary variables.
Note that the formulation is equivalent to

minimize λw>w +
1

n

n∑
i=1

ti

subject to ti ≥ max{0, 1− yi(w>xi − b)} for i = 1, . . . , n.
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Next, we can rewrite the constraints as linear constraints as the following.

minimize λw>w +
1

n

n∑
i=1

ti

subject to ti ≥ 1− yi(w>xi − b) for i = 1, . . . , n,

ti ≥ 0 for i = 1, . . . , n.

Therefore, it is a quadratic program as well.

5.3 Example: LASSO

Recall that LASSO can be formulated as

min
β

1

n
‖y −Xβ‖22 + λ‖β‖1.

Note that
‖y −Xβ‖22 = (y −Xβ)>(y −Xβ) = β>X>Xβ − 2y>Xβ + y>y

Here, X>X is positive semidefinite, and y>y is a constant term which can be ignored from the
objective. Moreover, we can replace the ‖β‖1 term by an auxiliary variable and a set of linear
constraints. To be specific, the problem is equivalent to

minimize
1

n
β>X>Xβ − 2

n
y>Xβ + λt

subject to t ≥
d∑
i=1

si,

si ≥ β ≥ −si for i = 1, . . . , d.

Hence, LASSO can be reformulated as a quadratic program.

6 Semidefinite programming

6.1 Motivation: max-cut

Semidefinite programming provides useful tools for solving difficult combinatorial optimization
problems. For example, we consider the “max-cut problem” defined as follows. Given a graph
G = (V,E), find a partition the vertex set V so that the number of edges crossing the partition is
maximized. Here, a partition (V1, V2) of V consists of two sets V1, V2 satisfying V1 ∪ V2 = V and
V1 ∩ V2 = ∅, and the set of edges crossing the partition is basically {uv ∈ E : u ∈ V1, v ∈ V2}. For
example, in Figure 5.3, there is a graph of 5 vertices partitioned into red and black vertices, and
the edges highlighted are the ones crossing the partition.

The problem can be formulated by the following (discrete) optimization problem:

maximize
∑
ij∈E

1− xixj
2

subject to xi ∈ {−1, 1} for i ∈ V.
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Figure 5.3: Edges crossing a partition

As long as xi ∈ R, xi ∈ {−1, 1} is equivalent to x2i = 1. Hence, the formulation is equivalent to

maximize
∑
ij∈E

1− xixj
2

subject to x2i = 1 for i ∈ V.

Let d = |V |. Then we consider a d × d matrix X whose entry at ith row and jth column, Xij , is
xixj . Then we have that X = xx>, which is the outer product of vector x and itself. In fact, X
is of the form X = xx> if and only if X is positive semidefinite and the rank of X is precisey 1.
What this implies is that, the max-cut formulation can be rewritten as

maximize
∑
ij∈E

1−Xij

2

subject to Xii = 1 for i ∈ V,
X � 0,

rank(X) = 1.

Here, the constrsint rank(X) = 1 is nonconvex, after taking which we obtain a convex optimization
problem:

maximize
∑
ij∈E

1−Xij

2

subject to Xii = 1 for i ∈ V,
X � 0.

This is often called the semidefinite programming (SDP) relaxation of max-cut.

6.2 General form

More generally, a semidefinite program is an optimization problem of the following form. Let C
and A1, . . . , Am be d× d matrices, and we have

minimize tr(C>X)

subject to tr(A>` X) = b` for ` = 1, . . . ,m

X � 0

(SDP)
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where

tr(C>X) =
d∑
i=1

d∑
j=1

CijXij and tr(A>` X) =
d∑
i=1

d∑
j=1

(A`)ijXij .

The dual semidefinite program of (SDP) is

maximize
m∑
`=1

b`yi

subject to
m∑
`=1

y`A` � C
(dual-SDP)

where
∑m

`=1 y`A` � C means C −
∑m

`=1 y`A` is positive semidefinite. If an optimization is in either
form, we say that it is a semidefinite program.

We will study more about duality later in this course. We have dicussed LP duality, and in
particular, we know how to derive the dual of a linear program. The notion of duality extends to
more general classes of convex optimization problems, such as semidefinite programming. We will
learn how to derive the dual of a given optimization problem, and we will discuss the notion of
weak and strong duality.

6.3 Example: quadratic programming

(QP) can be rewritten as

minimize t

subject to Ax ≥ b,
x>Qx+ 2p>x ≤ 2t.

In fact, this can be expressed as an instance of (dual-SDP) by rewriting Ax ≥ b and x>Qx+2p>x ≤
2t using some positive semidefinite matrices.

Note that Ax − b is a vector and Ax ≥ b means that the entries of Ax − b are nonnegative.
Diag(Ax− b) is the diagonal matrix whose diagonal entries are the components of Ax− b. In fact,
Ax− b ≥ 0 holds if and only if

Diag(Ax− b) � 0

which means that Diag(Ax− b) is positive semidefinite.

Next we consider x>Qx+ 2p>x ≤ 2t where Q is positive semidefinite.

Lemma 5.1. For any positive semidefinite matrix Q, there exists a matrix P such that Q = P>P .

Proof. By the eigen decomposition theorem from Lecture 2, Q can be written as Q = UΛU>

where U is an orthnormal matrix and Λ is a diagonal matrix whose diagonal entries consist of the
eigenvalues of Q. Since Q is positive semidefinite, all its eigenvalues are nonnegative, and therefore,
all diagonal entries of Λ are nonnegative. Then Λ1/2 can be properly defined by taking the square
root of each diagonal entry of Λ. Then Λ = (Λ1/2)>Λ1/2 as Λ1/2 is symmetric as well. Then

Q = UΛU> = U(Λ1/2)>Λ1/2U> = (Λ1/2U>)>(Λ1/2U>).

Taking P = Λ1/2U>, we have Q = P>P .
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By Lemma 5.1, x>Qx+ 2p>x ≤ 2t is equivalent to

x>P>Px+ 2p>x ≤ 2t

for some matrix P . We also need the following result.

Lemma 5.2. Let y ∈ Rd. Then y>y ≤ s is equivalent to(
s y>

y I

)
� 0

where I is the d× d identity matrix.

Proof. (⇐) Note that

(1,−y>)

(
s y>

y I

)(
1
−y

)
= s− y>y ≥ 0.

(⇒) Let u ∈ R and v ∈ Rd. Then

(u, v>)

(
s y>

y I

)(
u
v

)
= u2s+ 2uy>v + v>v

≥ u2y>y + 2uy>v + v>v

= (uy + v)>(uy + v)

≥ 0.

Therefore, the matrix is positive semidefinite as required.

By Lemma 5.2, x>P>Px+ 2p>x ≤ 2t is equivalent to(
2t− 2p>x (Px)>

Px I

)
� 0.

Finally, we have shown that (QP) is equivalent to the following optimization problem.

minimize t

subject to Diag(Ax− b) � 0,(
2t− 2p>x (Px)>

Px I

)
� 0.
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