IE 539: Convex Optimization
KAIST, Fall 2022
Lecture \#3: Convex functions, first-order and second-order optimality conditions September 6, 2022
Lecturer: Dabeen Lee

1 Outline

In this lecture, we study

- Convex functions,
- First-order optimality conditions, and
- Second-order optimality condition

2 Convex functions

2.1 Definition

Definition 3.1. A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if the domain $\operatorname{dom}(f)$ is convex and for all $x, y \in \operatorname{dom}(f)$, we have

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) \quad \text { for } 0 \leq \lambda \leq 1 .
$$

In words, f when evaluated at a point between x and y lies below the line segment joining $f(x)$ and $f(y)$.

Figure 3.1: Illustration of a convex function in \mathbb{R}^{2}

Definition 3.2. We say that $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is concave if $-f$ is convex.
Definition 3.3. A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is

- strictly convex if $\operatorname{dom}(f)$ is convex and for any distinct $x, y \in \operatorname{dom}(f)$, we have

$$
f(\lambda x+(1-\lambda) y)<\lambda f(x)+(1-\lambda) f(y) \text { for } 0<\lambda<1 .
$$

- strongly convex if $f(x)-\alpha\|x\|^{2}$ is convex for some $\alpha>0$ and norm $\|\cdot\|$.

Note that strong convexity implies strict convexity, and strict convexity implies convexity.

2.2 Examples

Univariate functions (on \mathbb{R})

- Exponential function: $e^{a x}$ for any $a \in \mathbb{R}$.
- Power function: x^{a} for $a \geq 1$ over \mathbb{R}_{+}and x^{a} for $a<0$ over \mathbb{R}_{++}. x^{a} for $0 \leq a<1$ over \mathbb{R}_{+}is concave.
- Logarithm: $\log x$ is concave on \mathbb{R}_{++}.
- Negative entropy: $x \log x$ on \mathbb{R}_{++}.

Multivariate functions (on \mathbb{R}^{d})

- Linear function: $a^{\top} x+b$ where $a \in \mathbb{R}^{d}$ and $b \in \mathbb{R}$ is both convex and concave.
- Quadratic function: $\frac{1}{2} x^{\top} A x+b^{\top} x+c$ where $A \succeq 0, b \in \mathbb{R}^{d}$, and $c \in \mathbb{R}$.
- Least squares loss: $\|b-A x\|_{2}^{2}$ for any A.
- Norm: Any norm $\|\cdot\|$ is concex, because a norm is subadditive and homogeneous.
- Maximum eigenvalue of a symmetric matrix.
- Indicator function: When C is convex, its indicator function, given by,

$$
I_{C}(x)= \begin{cases}0, & x \in C \\ \infty, & x \notin C\end{cases}
$$

is convex.

- Support function: Given a convex set C, its support function is defined as

$$
I_{C}^{*}(x)=\sup _{y \in C}\left\{y^{\top} x\right\} .
$$

- Conjugate function: Given an arbitrary function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, the conjugate function f^{*} is defined as

$$
f^{*}(x)=\sup _{y \in \mathbb{R}^{d}}\left\{y^{\top} x-f(y)\right\} .
$$

2.3 Properties of convex functions

Definition 3.4. The epigraph of a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is defined as

$$
\operatorname{epi}(f)=\{(x, t) \in \operatorname{dom}(f) \times \mathbb{R}: f(x) \leq t\} .
$$

The following is another definition of convex functions with respect to the epigraph.
Exercise 3.5. Prove that f is a convex function if and only if the epigraph is a convex set.
Example 3.6. Recall that the norm cone $\left\{(x, t) \in \mathbb{R}^{d} \times \mathbb{R}:\|x\| \leq t\right\}$ is a convex cone. This implies that any norm $f(x)=\|x\|$ is a convex function.

Figure 3.2: Convex level sets from a nonconvex function

Remark 3.7. A level set of a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is defined as

$$
\{x \in \operatorname{dom}(f): f(x) \leq \alpha\}
$$

for any $\alpha \in \mathbb{R}$. If f is convex, then all level sets are covex. However, the converse does not hold as Figure 3.2 demonstrates.

The following results provides a first-order characterization of convex functions.

Theorem 3.8. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a differentiable function. Then f is convex if and only if $\operatorname{dom}(f)$ is convex and

$$
f(y) \geq f(x)+\nabla f(x)^{\top}(y-x)
$$

for all $x, y \in \operatorname{dom}(f)$.

Proof. (\Rightarrow) We first consider the $d=1$ case. If f is convex, then for any $x, y \in \operatorname{dom}(f)$ and $\lambda \in[0,1]$,
$f(x+\lambda(y-x))=f((1-\lambda) x+\lambda y) \leq(1-\lambda) f(x)+\lambda f(y)$.
Moving the $(1-\lambda) f(x)$ term to the other side and dividing each side by λ, we obtain

$$
f(y) \geq f(x)+\frac{f(x+\lambda(y-x))-f(x)}{\lambda} .
$$

Then

$$
f(y) \geq f(x)+\lim _{\lambda \rightarrow 0^{+}} \frac{f(x+\lambda(y-x))-f(x)}{\lambda}=f(x)+(y-x) f^{\prime}(x)
$$

as f is differentiable and thus the limit exists.
Now we consider the general case. We take a function $g(\lambda):=f(x+\lambda(y-x))$ for $\lambda \in[0,1]$. Then g is differentiable as $g^{\prime}(\lambda)=(y-x)^{\top} \nabla f(x+\lambda(y-x))$. If f is convex, then g is convex. By the $d=1$ case, $g(1) \geq g(0)+g^{\prime}(0)$, which implies that $f(y) \geq f(x)+\nabla f(x)^{\top}(y-x)$.
(\Leftarrow) Let $x, y \in \operatorname{dom}(f)$ and $\lambda \in[0,1]$. Take $z=\lambda x+(1-\lambda) y$. Then

$$
f(x) \geq f(z)+\nabla f(z)^{\top}(x-z), \quad f(y) \geq f(z)+\nabla f(z)^{\top}(y-x) .
$$

Multiplying the first and second by λ and $(1-\lambda)$, respectively, and adding the resulting inequalities, it follows that

$$
\lambda f(x)+(1-\lambda) y) \geq f(z)+\nabla f(z)^{\top}(\lambda x+(1-\lambda) y-z)=f(\lambda x+(1-\lambda) y),
$$

so f is convex.

What follows is another first-order characterization.
Theorem 3.9. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a differentiable function. Then f is convex if and only if dom (f) is convex and

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq 0
$$

for all $x, y \in \operatorname{dom}(f)$.
Proof. (\Rightarrow) By Theorem 3.8, we have

$$
f(y) \geq f(x)+\nabla f(x)^{\top}(y-x), \quad f(x) \geq f(y)+\nabla f(y)^{\top}(x-y) .
$$

Add these two to obtain $(\nabla f(x)-\nabla f(y))^{\top}(x-y) \geq 0$.
(\Leftarrow) By the fundamental theorem of calculus, we obtain

$$
\begin{aligned}
\int_{0}^{1} \nabla f(x+\lambda(y-x))^{\top}(y-x) d \lambda & =\int_{0}^{1}\left(\frac{d}{d \lambda} f(x+\lambda(y-x))\right) d \lambda \\
& =\left.f(x+\lambda(y-x))\right|_{\lambda=0} ^{1} \\
& =f(y)-f(x) .
\end{aligned}
$$

Moreover, for any $\lambda>0$, we have

$$
\nabla f(x+\lambda(y-x))^{\top}(y-x)-\nabla f(x)^{\top}(y-x)=\frac{1}{\lambda}\langle\nabla f(x+\lambda(y-x))-\nabla f(x), \lambda(y-x)\rangle \geq 0
$$

implying in turn that

$$
\nabla f(x+\lambda(y-x))^{\top}(y-x) \geq \nabla f(x)^{\top}(y-x)
$$

for any $\lambda>0$. Note that this inequality trivially holds when $\lambda=0$. Therefore,

$$
f(y)-f(x)=\int_{0}^{1} \nabla f(x+\lambda(y-x))^{\top}(y-x) d \lambda \geq \nabla f(x)^{\top}(y-x) .
$$

Then f is convex by Theorem 3.8.
Next, we consider the second-order characterization.
Theorem 3.10. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a twice differentiable function ${ }^{1}$. Then f is convex if and only if $\operatorname{dom}(f)$ is convex and

$$
\nabla^{2} f(x) \succeq 0 .
$$

for all $x \in \operatorname{dom}(f)$.
Proof. (\Rightarrow) We first consider the $d=1$ case. By Theorem 3.8, we have $f(x) \geq f(y)+f^{\prime}(y)(x-y)$ and $f(y) \geq f(x)+f^{\prime}(x)(y-x)$. Adding these up and dividing each side by $(y-x)^{2}$, we obtain

$$
\frac{f^{\prime}(y)-f^{\prime}(x)}{y-x} \geq 0 .
$$

Taking the limit as $y \rightarrow x$, we obtain $f^{\prime \prime}(x) \geq 0$.
Next, let us consider the general case. Let $x \in \operatorname{dom}(f)$ and $v \in \mathbb{R}^{d}$. As $\operatorname{dom}(f)$ is open, we have a sufficiently small $\epsilon>0$ such that $x+\lambda v \in \operatorname{dom}(f)$ for any $\lambda \in(-\epsilon, \epsilon)$. Let $g(\lambda)=f(x+\lambda v)$

[^0]for $\lambda \in(-\epsilon, \epsilon)$. Since f is convex, g is also convex. Note that $g^{\prime}(\lambda)=v^{\top} \nabla f(x+\lambda v)$ and that $g^{\prime \prime}(\lambda)=v^{\top} \nabla^{2} f(x+\lambda v) v$. By the $d=1$ case,
$$
g^{\prime \prime}(0)=v^{\top} \nabla^{2} f(x) v \geq 0
$$

Therefore, we have proved that $\nabla^{2} f(x)$ is positive semidefinite.
(\Leftarrow) By the fundamental theorem of calculus, we obtain

$$
\begin{aligned}
\int_{0}^{1}(y-x)^{\top} \nabla^{2} f(x+\lambda(y-x)) d \lambda & =\int_{0}^{1}\left(\frac{d}{d \lambda} \nabla f(x+\lambda(y-x))\right) d \lambda \\
& =\left.\nabla f(x+\lambda(y-x))\right|_{\lambda=0} ^{1} \\
& =\nabla f(y)-\nabla f(x) .
\end{aligned}
$$

Then

$$
\langle\nabla f(y)-\nabla f(x), y-x\rangle=\int_{0}^{1}(y-x)^{\top} \nabla^{2} f(x+\lambda(y-x))(y-x) d \lambda \geq 0
$$

where the inequality follows because $\nabla^{2} f$ is positive semidefinite. Then f is convex by Theorem 3.9.

[^0]: ${ }^{1} \nabla^{2} f$ exists at any point in $\operatorname{dom}(f)$, and $\operatorname{dom}(f)$ is open.

