1 Outline

In this lecture, we study

- Linear algebra review (symmetric matrices, eigenvalue decomposition, positive semidefinite matices)
- Multivariate calculus review,
- Convex sets

2 Symmetric matrices, eigenvalues, eigenvectors, and positive semidefinite matrices

Let M be an $d \times d$ square matrix. Then M is symmetric if $M=M^{\top}$, i.e., $M_{i j}=M_{j i}$ for any $i, j \in[d]^{1}$. We say that (λ, v) is an eigenvalue-eigenvector pair for M if $M v=\lambda v$. In fact, any symmetric matrix M satisfies the following properties.

- All the eigenvalues of M are real.
- The eigenvectors corresponding to distinct eigenvalues are orthogonal.

Theorem 2.1. Let M be a symmetric matrix. Then M can be written as $M=Q \Lambda Q^{\top}$ where

1. Q is an orthonormal matrix, i.e. $Q^{\top} Q=Q Q^{\top}=I$, whose columns are the eigenvectors of M,
2. Λ is a diagonal matrix whose diagonal entries are the eigenvalues of M.

Here, $Q M Q^{\top}$ is called an eigen decomposition of M. Therefore, any $d \times d$ symmetric matrix M can be expressed as

$$
M=\sum_{i=1}^{d} \lambda_{i} v^{i} v^{i \top}
$$

where each $\left(\lambda_{i}, v^{i}\right)$ is an eigenpair.
Definition 2.2. We say that a symmetric matrix is positive semidefinite ($P S D$) if all its eigenvalues are nonnegative.

Theorem 2.3. Let M be an $d \times d$ symmetric matrix. Then M is $P S D$ if and only if $x^{\top} M x \geq 0$ for all $x \in \mathbb{R}^{d}$.

[^0]Proof. Since M is symmetric, we can write M as $M=\sum_{i=1}^{d} \lambda_{i} v^{i} v^{i \top}$. In particular, v^{1}, \ldots, v^{d} form an orthonormal basis of \mathbb{R}^{d}. Then for any $x \in \mathbb{R}^{d}$, there exist scalars $\alpha_{1}, \ldots, \alpha_{d}$ so that $x=\sum_{i=1}^{d} \alpha_{i} v^{i}$. Then $x^{\top} M x \geq 0$ if and only if

$$
\left(\sum_{i=1}^{d} \alpha_{i} v^{i}\right)^{\top}\left(\sum_{i=1}^{d} \lambda_{i} v^{i} v^{i \top}\right)\left(\sum_{i=1}^{d} \alpha_{i} v^{i}\right)=\sum_{i=1}^{d} \alpha_{i}^{2} \lambda_{i} \geq 0 .
$$

Hence, $x^{\top} M x \geq 0$ for all $x \in \mathbb{R}^{d}$ if and only if λ_{i} 's are all nonnegative, as required.

3 Lipschitz continuity, gradient, and Hessian

We say that a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is Lipschitz continuous with respect to norm $\|\cdot\|$ if there exists some nonnegative constant $L \geq 0$ such that

$$
|f(x)-f(y)| \leq L\|x-y\| \quad \text { for all } x, y \in \mathbb{R}^{n}
$$

Here, we say that f is L-Lipschitz with respect to $\|\cdot\|$.
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function. Let e^{i} denote the i th unit vector. For example, $e^{1}=(1,0, \ldots, 0)^{\top}$ and $e^{d}=(0, \ldots, 0,1)^{\top}$. Then the i th partial derivative of f is defined as

$$
\frac{\partial f}{\partial x_{i}}(x)=\lim _{t \rightarrow 0} \frac{f\left(x+t e^{i}\right)-f(x)}{t}
$$

Thus, the i th partial derivative is the directional derivative of f along the i th unit direction e^{i}. If all the partial derivatives of f exist at $x \in \mathbb{R}^{d}$, then we may define the gradient of f at x, given by

$$
\nabla f(x)=\left(\frac{\partial f}{\partial x_{1}}(x), \ldots, \frac{\partial f}{\partial x_{d}}(x)\right)^{\top}
$$

If a function is Lipschitz continuous, then it is continuous and differentiable almost everywhere. However, there is a function that is Lipschitz continuous but not differentiable. For example, $f(x)=|x|$ for $x \in \mathbb{R}$.
Next,

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) \quad \text { for } i, j \in[d]
$$

are the second partial derivatives of f. If all the second partial derivatives exist, then we may define the Hessian of f as follows

$$
\nabla^{2} f(x)=\left(\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}}(x) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{d}}(x) \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{2}^{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{d}}(x) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{d} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{d} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{d}^{2}}(x)
\end{array}\right) .
$$

Moreover, if the second partial derivatives are continuous, then Schwarz's theorem implies that the Hessian is symmetric, i.e.,

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x)=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(x) \quad \text { for every } i, j \in[d] .
$$

4 A little bit of matrix calculus

Let A be an $n \times d$ matrix and $b \in \mathbb{R}^{n}$. Let $f(x)=g(A x-b)$. Then by the chain rule,

$$
\nabla f(x)=A^{\top} \nabla g(A x-b), \quad \nabla^{2} f(x)=A^{\top} \nabla^{2} g(A x-b) A .
$$

Example 2.4. Consider $f(x)=A x-b$. Then $\nabla f(x)=A^{\top}$.
Consider a quadratic function $f(x)=x^{\top} Q x+p^{\top} x$. Then the gradient of f is given by

$$
\nabla f(x)=\left(Q+Q^{\top}\right) x+p, \quad \nabla^{2} f(x)=Q+Q^{\top}
$$

Example 2.5. Consider $f(x)=\|A x-b\|_{2}^{2} / 2$. Then

$$
\nabla f(x)=A^{\top}(A x-b), \quad \nabla^{2} f(x)=A^{\top} A
$$

5 Convex sets

5.1 Definition

Definition 2.6. A set $X \subseteq \mathbb{R}^{d}$ is convex if for any $u, v \in X$ and any $\lambda \in[0,1]$,

$$
\lambda u+(1-\lambda) v \in X
$$

In words, the line segment joining any two points is entirely contained the set. In Figure 2.1, we have a convex set and a non-convex set.

Figure 2.1: A convex set and a nonconvex set
Definition 2.7. Given $v^{1}, \ldots, v^{k} \in \mathbb{R}^{d}$, any linear combination $\lambda_{1} v^{1}+\cdots+\lambda_{k} v^{k}$ is a convex combination of v^{1}, \ldots, v^{k} if

$$
\sum_{i=1}^{k} \lambda_{i}=1 \quad \text { and } \quad \lambda_{i} \geq 0 \text { for } i=1, \ldots, k
$$

The convex combination of two distinct points u, v is the line segment $\{\lambda u+(1-\lambda) v: 0 \leq \lambda \leq 1\}$ connecting them.
Definition 2.8. The convex hull of a set X, denoted $\operatorname{conv}(X)$, is the set of all convex combinations of points in X. By definition,

$$
\operatorname{conv}(X)=\left\{\begin{array}{c}
n \in \mathbb{N}, v^{1}, \ldots, v^{n} \in X \\
\sum_{i=1}^{n} \lambda_{i} v^{i}: \quad \sum_{i=1}^{n} \lambda_{i}=1, \lambda_{1}, \ldots, \lambda_{n} \geq 0
\end{array}\right\}
$$

$\operatorname{conv}(X)$ is always convex regardless of X. Figure 2.2 shows some examples of taking the convex hull of a (nonconvex) set.

Figure 2.2: A convex set and a nonconvex set

5.2 Cones and affine subspaces

Definition 2.9. A set $C \subseteq \mathbb{R}^{d}$ is a cone if for any $v \in C$ and $\alpha>0$, we have $\alpha v \in C$. Furthermore, if C is convex, then it is called a convex cone.

Note that not all cones are convex. Recall that we discussed linear and convex combinations of vectors.
Definition 2.10. Given $v^{1}, \ldots, v^{k} \in \mathbb{R}^{d}$, any point of the form $\alpha_{1} v^{1}+\cdots+\alpha v_{k} v^{k}$ is a conic combination of v^{1}, \ldots, v^{k} if $\alpha_{1}, \ldots, \alpha_{k} \geq 0$.

In other words, any nonnegative linear combination is a conic combination.
Definition 2.11. The conic hull of a set X, denoted cone (X), is the set of all conic combinations of points in X. By definition,

$$
\operatorname{conv}(X)=\left\{\begin{array}{l}
\left.\sum_{i=1}^{n} \lambda_{i} v^{i}: \begin{array}{l}
n \in \mathbb{N}, v^{1}, \ldots, v^{n} \in X, \\
\lambda_{1}, \ldots, \lambda_{n} \geq 0
\end{array}\right\} ~ . ~
\end{array}\right.
$$

As $\operatorname{conv}(X), \operatorname{cone}(X)$ is always convex, Figure 2.3 shows an example taking the conic hull of a set in \mathbb{R}^{2}.

Figure 2.3: Taking the conic hull of a triangle in \mathbb{R}^{2}

Lastly, we define the notion of affine subspaces.
Definition 2.12. Given $v^{1}, \ldots, v^{k} \in \mathbb{R}^{d}$, any point of the form $\theta_{1} v^{1}+\cdots+\theta v_{k} v^{k}$ is a affine combination of v^{1}, \ldots, v^{k} if $\theta_{1}+\cdots+\theta_{k}=1$.

In contrast to covex combinations, affine combinations allow negative multipliers.
Definition 2.13. The affine hull of a set X is the set of all affine combinations of points in X.
The affine hull of X is also referred to as the affine subspace spanned by X. In the previous lecture, we defined the linear subspace spanned by a finite set of vectors, but we can extend the definition to an arbitrary set. The linear hull of a set X is equivalent to the linear subspace spanned by X.
In Figure 2.4, we have a set S of two points in \mathbb{R}^{2}. The red line segment is $\operatorname{conv}(S)$, the green line through the two points is the affine subspace spanned by S, the blue cone depicts cone (S), and lastly, the orange regin (in fact, \mathbb{R}^{2}) is the linear subspace spanned by S.

Figure 2.4: Comparing the linear subspace, the affine subspace, the convex hull, and the conic hull

Theorem 2.14. An affine subspace is a translation of a linear subspace. For an affine subspace $V \subseteq \mathbb{R}^{d}$, there exist matrices A and b such that $V=\left\{x \in \mathbb{R}^{d}: A x=b\right\}$.

5.3 Examples

We saw that the convex hull and conic hull of a set are convex and that the linear subspace and affine subspace spanned by a set are convex. There are many more examples.

1. Empty set, singletons (sets of the form $\{v\}$),
2. Norm ball: $\left\{x \in \mathbb{R}^{d}:\|x-c\| \leq r\right\}$ where c is the center.
3. Ellipsoid: $\left\{x \in \mathbb{R}^{d}:(x-c)^{\top} P(x-c) \leq 1\right\}$ where P is positive definitie and c is the center.
4. Hyperplane: $\left\{x \in \mathbb{R}^{d}: a^{\top} x=b\right\}$ where $a \in \mathbb{R}^{d}$ and $b \in \mathbb{R}$.
5. Half-space: $\left\{x \in \mathbb{R}^{d}: a^{\top} x \leq b\right\}$ where $a \in \mathbb{R}^{d}$ and $b \in \mathbb{R}$.
6. Polyhedron: A polyhedron is a finite intersection of half spaces, $\left\{x \in \mathbb{R}^{d}: A x \leq b\right\}$ where $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^{m}$. Here, $A x \leq b$ is a short-hand notation for system $a_{k}^{\top} x \leq b_{k}$ for $k \in[m]$.
7. Polytope: A polytope is a polyhedron that is bounded. Equivalently, a polytope is the convex hull of a finite set of vectors.
8. Simplex: A set of the form $\left\{x \in \mathbb{R}^{d}: 1^{\top} x=1, x \geq 0\right\}$, which is equal to the convex hull of e^{1}, \ldots, e^{d}, the d-dimensional unit vectors.
9. Nonnegative orthant: $\mathbb{R}_{+}^{d}=\left\{x \in \mathbb{R}^{d}: x \geq 0\right\}$.
10. Positive orthant: $\mathbb{R}_{++}^{d}=\left\{x \in \mathbb{R}^{d}: x>0\right\}$.

There are examples of convex cones, which are convex as well.

1. Norm cone: $\left\{(x, t) \in \mathbb{R}^{d} \times \mathbb{R}:\|x\| \leq t\right\}$. When $\|\cdot\|$ is the Euclidean norm, the cone is called the second-order cone.
2. Positive semidefinite cone: The set of all positive semidefinite matrices of a fixed dimension.

[^0]: ${ }^{1}$ Here, $[d]$ simply denotes $\{1, \ldots, d\}$.

