1 Outline

In this lecture, we study

- variants of Quasi-Newton methods,
- convergence of the quasi-Newton methods.

2 Quasi-Newton method

Remember our comparison of gradient descent and Newton's method. Gradient descent has a cheper iteration cost of $O(d)$, while Newton's method has a lower iteration complexity of $O(\log \log (1 / \epsilon))$. Quasi-Newton methods are designed to achieve the best of both worlds. We will study methods that achieve an iteration cost of $O\left(d^{2}\right)$ and an iteration complexity of $o(\log (1 / \epsilon))$.

The basic outline of a quasi-Newton method is as follows.

```
Algorithm 1 Quasi-Newton method
    Initialize \(x_{1}\) and a positive definite matrix \(B_{1}\).
    for \(t=1, \ldots, T-1\) do
        Solve \(B_{t} g_{t}=-\nabla f\left(x_{t}\right)\).
        Update \(x_{t+1}=x_{t}+\eta_{t} g_{t}\).
        Compute \(B_{t+1}\) from \(B_{t}\).
    end for
    Reutrn \(x_{T}\).
```

Here, a candidate for B_{t} is $\nabla^{2} f\left(x_{t}\right)$, in which case, $g_{t}=-\nabla^{2} f\left(x_{t}\right)^{-1} \nabla f\left(x_{t}\right)$ corresponds to a Newton interation. Note that given x_{t} and B_{t}, we can obtain g_{t} and x_{t+1}. For the next iteration, we need to design B_{t+1}. There are several desired properties when selecting B_{t+1} based on B_{t}.

- We want B_{t+1} to be symmetric and positive definite.
- We want B_{t+1} to be close to B_{t}, or we want to compute B_{t+1} from B_{t} easily.
- We want B_{t+1} to satisfy

$$
\nabla f\left(x_{t+1}\right)-\nabla f\left(x_{t}\right)=B_{t+1} g_{t}
$$

A motivation for this is that for one dimensional problem, we have

$$
h^{\prime}\left(x_{t+1}\right)=\frac{h\left(x_{t+1}\right)-h\left(x_{t}\right)}{x_{t+1}-x_{t}}
$$

and thus $h\left(x_{t+1}\right)-h\left(x_{t}\right)=h^{\prime}\left(x_{t+1}\right)\left(x_{t+1}-x_{t}\right)$.

Hereinafter, we stick to the following notations for ease of exposition.

$$
B^{+}=B_{t+1}, \quad B=B_{t}, \quad s^{+}=g_{t+1}, \quad s=g_{t}, \quad y=\nabla f\left(x_{t+1}\right)-\nabla f\left(x_{t}\right) .
$$

Hence, the goal is to compute B^{+}satisfying the desired properties. In particular, we want B^{+}to be positive definite and satisfy

$$
y=B^{+} s
$$

which is called the secant equation.

2.1 Symmetric rank-one (SR1) update

Remember that we want B^{+}to be something that is "close" to B. One way is to add a rank-one matrix to B to obtain B^{+}. To be precise, let $a \in \mathbb{R}$ and $u \in \mathbb{R}^{d}$. Then we update

$$
B^{+}=B+a u u^{\top} .
$$

Then the secant equation requires that

$$
y-B s=a\left(u^{\top} s\right) u,
$$

in which case $y-B s$ and u are scalar multiples of each other. Hence, we can set $u=y-B s$ and $a=1 /\left((y-B s)^{\top} s\right)$. Then B^{+}is given by

$$
B^{+}=B+\frac{(y-B s)(y-B s)^{\top}}{(y-B s)^{\top} s} .
$$

Next, to compute s^{+}satisfying $B^{+} s^{+}=-\nabla f\left(x^{+}\right)$, which corresponds to $B_{t+1} g_{t+1}=-\nabla f\left(x_{t+1}\right)$, we need to obtain the inverse of B^{+}. In fact, the inverse of B^{+}based on the SR1 update is given easily.
Lemma 25.1 (Sherman-Morrison formula). Let $B \in \mathbb{R}^{d \times d}$ be invertible, and let $u, v \in \mathbb{R}^{d}$.

$$
\left(B+u v^{\top}\right)^{-1}=B^{-1}-\frac{B^{-1} u v^{\top} B^{-1}}{1+v^{\top} B^{-1} u} .
$$

Based on this lemma,

$$
\begin{aligned}
\left(B^{+}\right)^{-1} & =B^{-1}-\frac{B^{-1}(y-B s)(y-B s)^{\top} B^{-1}}{(y-B s)^{\top} s+(y-B s)^{\top} B^{-1}(y-B s)} \\
& =B^{-1}+\frac{\left(s-B^{-1} y\right)\left(s-B^{-1} y\right)^{\top}}{\left(s-B^{-1} y\right) y} .
\end{aligned}
$$

However, B^{+}is not necessarily positive definite, even if B is.

2.2 Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

Our next attempt is to add a rank-two matrix, which is the sum of two rank-one matrices. To be specific, let $a, b \in \mathbb{R}$ and $u, v \in \mathbb{R}^{d}$. Then we update

$$
B^{+}=B+a u u^{\top}+b v v^{\top} .
$$

Then the secant equation requires that

$$
y-B s=a\left(u^{\top} s\right) u+b\left(v^{\top} s\right) v,
$$

in which case, we can set $u=-B s$ and $v=y$. Then

$$
B^{+}=B-\frac{B s s^{\top} B}{s^{\top} B s}+\frac{y y^{\top}}{y^{\top} s} .
$$

This update rule is called the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update.
Lemma 25.2 (Woodbury formula). Let B, D be invertible matrices and U, V be matrices of appropriate dimensions. Then

$$
(B+U D V)^{-1}=B^{-1}-B^{-1} U\left(D^{-1}+V B^{-1} U\right)^{-1} V B^{-1} .
$$

Then

$$
\begin{aligned}
\left(B^{+}\right)^{-1} & =(B+\underbrace{\left[\begin{array}{ll}
B s & y
\end{array}\right]}_{U} \underbrace{I}_{D} \underbrace{\left[\begin{array}{cc}
-1 / s^{\top} B s & 0 \\
0 & 1 / y^{\top} s
\end{array}\right]\left[\begin{array}{c}
s^{\top} B \\
y^{\top}
\end{array}\right]}_{V})^{-1} \\
& =\left(I-\frac{s y^{\top}}{y^{\top} s}\right) B^{-1}\left(I-\frac{y s^{\top}}{y^{\top} s}\right)+\frac{s s^{\top}}{y^{\top} s} .
\end{aligned}
$$

Once we have obtained the inverse of B, computing the inverse of B^{+}boils down to rank-one matrix multiplications, which costs $O\left(d^{2}\right)$ time steps.

Moreover, the resulting matrix B^{+}is positive definite.

$$
x^{\top}\left(B^{+}\right)^{-1} x=\left(x-\frac{x^{\top} s}{y^{\top} s} y\right)^{\top} B^{-1}\left(x-\frac{s^{\top} x}{y^{\top} s} y\right)+\frac{\left(x^{\top} s\right)^{2}}{y^{\top} s} .
$$

Here, since B is positive definite, so is its inverse. Hence, the first term is strictly positive. Moreover,

$$
y^{\top} s=\frac{1}{\eta_{t}}\left(\nabla f\left(x_{t+1}\right)-\nabla f\left(x_{t}\right)\right)^{\top}\left(x_{t+1}-x_{t}\right) \geq 0
$$

due to the convexity of f. Therefore, $x^{\top}\left(B^{+}\right)^{-1} x>0$ for any nonzero x, and thus B^{+}is positive definite.

2.3 Davidon-Fletcher-Powell (DFP) update

The DFGS update adds a rank-two matrix to the current matrix B. We may add a rank-two matrix to the inverse, and the corresponding update rule is called the Davidon-Fletcher-Powell (DFP) update. To be specific,

$$
\left(B^{+}\right)^{-1}=B^{-1}+a u u^{\top}+b v v^{\top},
$$

which is equivalent to

$$
B^{+}=\left(B^{-1}+a u u^{\top}+b v v^{\top}\right)^{-1}
$$

Then the secant equation requires that

$$
s-B^{-1} y=a\left(u^{\top} y\right) u+b\left(v^{\top} y\right) v .
$$

Following the same argument from the previous part, we have

$$
\left(B^{+}\right)^{-1}=B^{-1}-\frac{B^{-1} y y^{\top} B^{-1}}{y^{\top} B^{-1} y}+\frac{s s^{\top}}{s^{\top} y} .
$$

Moreover,

$$
B^{+}=\left(I-\frac{y s^{\top}}{s^{\top} y}\right) B\left(I-\frac{s y^{\top}}{s^{\top} y}\right)+\frac{y y^{\top}}{s^{\top} y} .
$$

2.4 Broyden class

We have discussed the BFGS and DFP update rules to run quasi-Newton iterations. We can interpolate them by taking

$$
\begin{equation*}
B^{+}=(1-\phi) B_{\mathrm{BFGS}}^{+}+\phi B_{\mathrm{DFP}}^{+} \tag{25.1}
\end{equation*}
$$

for some fixed ϕ where B_{BFGS}^{+}and B_{DFP}^{+}denote the matrices obtained by the BFGS and DFP update rules, respectively. Then

$$
\begin{aligned}
B^{+} & =B_{\mathrm{BFGS}}^{+}+\phi\left(B_{\mathrm{DFP}}^{+}-B_{\mathrm{BFGS}}^{+}\right) \\
& =B_{\mathrm{BFGS}}^{+}+\phi\left(B-\frac{B s s^{\top} B}{s^{\top} B s}-\left(I-\frac{y s^{\top}}{s^{\top} y}\right) B\left(I-\frac{s y^{\top}}{s^{\top} y}\right)\right) \\
& =B_{\mathrm{BFGS}}^{+}+\phi\left(s^{\top} B s\right)\left(\frac{y}{y^{\top} s}-\frac{B s}{s^{\top} B s}\right)\left(\frac{y}{y^{\top} s}-\frac{B s}{s^{\top} B s}\right)^{\top} .
\end{aligned}
$$

The Broyden class is the family of up update rules given by (25.1) for any ϕ. Of course, the BFGS and DFP updates belong to the Broyden class, corresponding to $\phi=0$ and $\phi=1$, respectively. In fact, the SR1 update is also in the Broyden class, as it corresponds to

$$
\phi=\frac{y^{\top} s}{y^{\top} s-s^{\top} B s} .
$$

2.5 Convergence of quasi-Newton methods

As for Newton's method, we assume the following conditions to guarantee convergence of quasiNewton methods.

- f is twice continuously differentiable.
- f is m-strongly convex and M-smooth in the ℓ_{2} norm.
- The Hessian of f is L-Lipschitz continuous in the ℓ_{2} norm.

It is proved that both BFGS and DFP with backtracking line search guarantee

$$
\left\|x_{t+1}-x^{*}\right\|_{2} \leq c_{t}\left\|x_{t}-x^{*}\right\|_{2}
$$

where $c_{t} \rightarrow 0$ as $t \rightarrow \infty$. Remember that gradient descent guarantees

$$
\left\|x_{t+1}-x^{*}\right\|_{2} \leq \gamma\left\|x_{t}-x^{*}\right\|_{2}
$$

for some "fixed" γ. Hence, quasi-Newton methods result in faster convergence. At the same time, each iteration requires $O\left(d^{2}\right)$ time, which is smaller than $O\left(d^{3}\right)$.

