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1 Outline

In this lecture, we study

• Convergence of Newton’s method.

2 Newton’s method

2.1 Affine transformation

Let us get back to the quadratic minimization example. Let us take

Q =

[√
M 0
0

√
m

]
and consider the linear transformation defined by y = Qx. Then

f(x) =
1

2
x⊤

[
M 0
0 m

]
x =

1

2
x⊤Q⊤Qx =

1

2
y⊤y.

Therefore, after the linear transformation, the function becomes 1-smooth and 1-strongly convex
in the ℓ2 norm. Moreover, g(y) = (1/2)y⊤y satisfies

∇2g(y) = I.

Hence, gradient descent converges after O(log(1/ϵ)) iterations. This implies that gradient descent
can be improved by taking a proper affine transformation.

Newton’s method can be interpreted as finding an affine transformation that is locally optimal at
each iteration. To be more precise, at xt, we want to find an affine transformation y = Qtx so that
g(y) = f(Q−1

t y) = f(x) and ∇2g(yt) = I. Note that

∇2g(yt) = (Q−1
t )⊤∇2f(Q−1

t yt)Q
−1
t .

Hence, ∇2g(yt) = I if and only if

Qt = (∇2f(Q−1
t yt))

−1/2 = (∇2f(xt))
−1/2.

In this case, g becomes 1-smooth and 1-strongly convex (we will see this later), and thus gradient
descent on g proceeds with

yt+1 = yt −∇g(yt).
Here, we have yt = Qtxt and ∇g(yt) = Q−1

t ∇f(Q
−1
t yt) = Q−1

t ∇f(xt). This implies that

yt+1 = Qtxt −Q−1
t ∇f(xt).

Multiplying both sides by Q−1
t , it follows that

xt+1 = Q−1
t yt+1 = xt −Q−2

t ∇f(xt) = xt −∇2f(xt)
−1∇f(xt),

which is prrecisely the update rule of Newton’s method.
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2.2 Netwon’s method with backtracking line search

We have built up intuitions for the update rule of Newton’s method and the corresponding descent
direction. However, the method as it is does not necessarily converge. Let us consider the following
example. Let us consider

minimizex∈R f(x) =
√

1 + x2.

Note that

f ′(x) =
x√

1 + x2
,

f ′′(x) =
1

(1 + x2)3/2
.

Hence, Newton’s method runs with

xt+1 = xt − f ′′(xt)
−1f ′(xt) = xt − xt(1 + x2t ) = −x3t .

Then if |x1| ≥ 1, the method diverges, while it converges when |x1| < 1.

To remedy this, we combine Newton’s method and backtracking line search.

Algorithm 1 Newton’s method with backtracking line search

Initialize x1.
for t = 1, . . . , T − 1 do

Compute dt = −∇2f(xt)
−1∇f(xt).

Compute a step size ηt by backtracking line search.
Update xt+1 = xt − ηtdt.

end for
Return xT .

What is backtracking line search for Newton’s method?

1. Fix parameters 0 < β < 1 and 0 < α < 1
2 .

2. Start with an initial step size η = 1.

3. Until the following condition is satisfied, we shrink η ← βη.

f(x+ ηd) < f(x) + αη∇f(x)⊤d

where d = −∇2f(x)−1∇f(x).

4. We take the final η.

In fact, it is proved that Newton’s method runs with two phases. The first phase applies the
backtracking line search and ends up with step sizes less than 1. For the second phase, backtracking
line search returns step size η = 1, which means the sufficient descent condition is satisfied with
η = 1 at each iteration of the second phase. For this reason, Newton’s method is often referred to as
the combination of “damped” Newton phase and “undamped” Newton phase where the damped and
undamped versions are Newton’s method with and without backtracking line search, respectively.
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Algorithm 2 Undamped Newton’s method

Initialize x1.
for t = 1, . . . , T − 1 do

Compute dt = −∇2f(xt)
−1∇f(xt).

Update xt+1 = xt − dt.
end for
Return xT .

2.3 Convergence of Newton’s method

Suppose that the objective function f satisfies the following conditions.

• f is twice continuously differentiable.

• f is m-strongly convex in the ℓ2 norm, i.e.,

∇2f(x) ⪰ mI.

• f is M -smooth in the ℓ2 norm, i.e.,

∇2f(x) ⪯MI.

• The Hessian of f is L-Lipschitz continuous in the ℓ2 norm, i.e.,

∥∇2f(x)−∇2f(y)∥2 ≤ L∥x− y∥2.

What we can show about Algorithm 1 is what follows. There exist numbers δ and γ such that the
following is satisfied.

1. If ∥∇f(xt)∥2 ≥ δ, then
f(xt+1)− f(xt) ≤ −γ.

2. If ∥∇f(xt)∥2 < δ, then the backtracking line search selects ηt = 1 and

L

2m2
∥∇f(xt+1)∥2 ≤

(
L

2m2
∥∇f(xt)∥2

)2

.

This implies that Newton’s method consists of two phases. When ∥∇f(xt)∥2 is large, the algorithm
is in the damped phase where backtracking line search is used to find a step size. On the other
hand, when ∥∇f(xt)∥2 < δ, the backtracking line search step sets ηt = 1, which means that the
step is in the undamped phase. Moreover, we can argue that ∥∇f(xt+1)∥2 < δ and therefore the
undamped phase continues.

Note that the moment of transition from the damped Newton phase to the undamped phase can
be determined if we know the value of δ. However, the algorithm does not assume the knowledge
of its precise value.

In fact, we can argue that the statements hold with

δ = min {1, 3(1− 2α)} m
2

L
and γ = αβδ2

m

M2
.
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To compute the value of δ, we need the values of the Lipschitz continuity parameter L and the
strongly convexity parameter m. Assuming the knowledge of these parameters, one can artificially
set the moment of transition from the damped phase to the undamped phase. We refer the reader
convex optimization textbook of Boyd and Vandenberghe [BV04] for more details of the convergence
result and proof.

Under 1, the objective value decreases by at least γ. Hence, we can bound the number of iterations
under the damped phase. It is

f(x1)− f(x∗)

γ

where x∗ is a minimizer of f .

Suppose that ∥∇f(xk)∥2 < δ. Then the inequality under 2 holds, and thus

∥∇f(xk+1)∥2 ≤
L

2m2
δ2 =

δ

2
·min {1, 3(1− 2α)} ≤ δ

2
.

This implies that ∥∇f(xt)∥2 < δ for any t ≥ k. Moreover, for any t ≥ k,

L

2m2
∥∇f(xt+1)∥2 ≤

(
L

2m2
∥∇f(xt)∥2

)2

≤
(

L

2m2
∥∇f(xk)∥2

)2t+1−k

≤
(
1

2

)2t+1−k

Therefore, it follows that

∥∇f(xt)∥2 ≤
2m2

L

(
1

2

)2t−k

.

By the m-strong convexity of f , we have

f(x∗) ≥ f(xt) +∇f(xt)⊤(x∗ − xt) +
m

2
∥x∗ − xt∥22

≥ min
y

{
f(xt) +∇f(xt)⊤(y − xt) +

m

2
∥y − xt∥22

}
= f(xt)−

1

2m
∥∇f(xt)∥22.

Hence,

f(xt)− f(x∗) ≤ 1

2m
∥∇f(xt)∥22 ≤

2m3

L2

(
1

2

)2t−k+1

.

In summary, the number of iterations to obtain an ϵ-optimal solution is bounded above by

f(x1)− f(x∗)

γ
+log log

(
2m3

L2
· 1
ϵ

)
≤ αβ(f(x1)−f(x∗))

L2M2

min{1, 3(1− 2α)}m5
+log log

(
2m3

L2
· 1
ϵ

)
.

2.4 Time complexity

Remember that gradient descent for a m-strongly convex and M -smooth function converges to an
ϵ-optimal solution after O(M/m log(1/ϵ)) iterations. For each iteration, we compute the gradient
and excutes vector arithmetics, which costs O(d) time where d is the ambient dimension. Hence,
the time complexity of gradient descent is

O

(
d
M

m
log

1

ϵ

)
.
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In contrast, Newton’s method requires O(log log(1/ϵ)) iterations, while each step requires comput-
ing the Hessian and its inverse. Computing the Hessian takes O(d2) time steps while computing
the inverse takes O(dω) where ω is the exponent for matrix multiplication. The current best known
bound for ω is 2.373 [AW]1. Hence, the time complexity of Newton’s method is

O

(
dω log log

1

ϵ

)
.

However, algorithms that achieve the best time compdddddlexity for matrix multiplication are not
necessarily practical. We often use the Gaussian elimination based methods, which costs O(d3)
time steps, in which case, the time complexity is

O

(
d3 log log

1

ϵ

)
.

Although the dependence on the error tolerance ϵ is small, Newton’s method suffers from high-
dimensional problems.
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