
IE 539: Convex Optimization KAIST, Fall 2022
Lecture #23: Dual proximal gradient, ADMM, Newton’s method November 24, 2022
Lecturer: Dabeen Lee

1 Outline

In this lecture, we study

• Proximal gradient applied to the dual,

• Alternating direction method of multipliers (ADMM),

• Introduction to Newton’s method

2 Dual of composite minimization

We consider
minimize f(x) + g(Ax),

which is equivalent to

minimize f(x) + g(y)

subject to Ax = y.

Its dual can be derived as
maximize − f∗(−A>µ)− g∗(µ).

The gradient ascent method applied to the dual is given by the following.

Algorithm 1 Dual gradient method for composite problems

Initialize µ1.
for t = 1, . . . , T − 1 do

Obtain xt ∈ argminx f(x) + µ>t Ax and yt ∈ argminy g(y)− µ>t y.
Update µt+1 = µt + ηt(Axt − yt) for a step size ηt > 0.

end for

Basically, at each iteration, we minimize the Lagrangian function at µ = µt:

f(x) + g(y) + µ>t (Ax− y).

Instead, the augmented Lagrangian method considers the augmented Lagrangian function given by

f(x) + g(y) + µ>t (Ax− y) +
η

2
‖Ax− y‖22.

Here, µt changes over iterations while η remains constant.

1

Algorithm 2 Augmented Lagrangian method for composite problems

Initialize µ1.
for t = 1, . . . , T − 1 do

Obtain (xt, yt) ∈ argmin(x,y) f(x) + g(y) + µ>t (Ax− y) + η
2‖Ax− y‖

2
2,

Update µt+1 = µt + η(Axt − yt).
end for

2.1 Proximal gradient applied to the dual

Next, we apply the proximal gradient method to the dual. Throughout this subsection, let us
assume that f∗ is differentiable. Again, the dual is given by

miniimize f∗(−A>µ) + g∗(µ).

The proximal gradient method proceeds with

µt+1 = proxηg∗
(
µt + ηA∇f∗(−A>µt)

)
since the gradient of h(µ) = f∗(−A>µ) is ∇h(µ) = −A∇f∗(−A>µ). Moreover, xt = ∇f∗(−A>µt)
if and only if −A>µt ∈ ∂f(xt) which is equivalent to xt ∈ argminx f(x) +µ>t Ax. Hence, the update
rule is equivalent to

xt ∈ argmin
x

f(x) + µ>t Ax,

µt+1 = proxηg∗ (µt + ηAxt) .

Furthermore, by the Moreau decomposition theorem, it follows that

µt+1 = µt + ηAxt − η proxg/η(µt/η +Axt).

Here, yt = proxg/η(µt/η +Axt) if and only if

µt
η

+Axt − yt ∈
1

η
∂g(yt)

which is equivalent to

yt ∈ argmin
y

{
g(y) + µ>t (Axt − y) +

η

2
‖Axt − y‖22

}
.

Therefore, the proximal gradient descent applied to the dual is given by the following pseudo-code.

Algorithm 3 Proximal gradient for composite problems

Initialize µ1.
for t = 1, . . . , T − 1 do

Obtain xt ∈ argminx f(x) + µ>t Ax,
Obtain yt ∈ argminy

{
g(y) + µ>t (Axt − y) + η

2‖Axt − y‖
2
2

}
,

Update µt+1 = µt + η(Axt − yt).
end for

2

Algorithm 4 Alternating direction method of multipliers

Initialize µ1 and y0.
for t = 1, . . . , T − 1 do

Obtain xt ∈ argminx
{
f(x) + g(yt−1) + µ>t (Ax− yt−1) + η

2‖Ax− yt−1‖
2
2

}
,

Obtain yt ∈ argminy
{
f(xt) + g(y) + µ>t (Axt − y) + η

2‖Axt − y‖
2
2

}
,

Update µt+1 = µt + η(Axt − yt).
end for

2.2 ADMM

Lastly, we discuss the alternating direction method of multipliers (ADMM). Its pseudo-code is given
by the following.

ADMM is equivalent to the Douglas-Rachford splitting method applied to the dual problem.

3 Newton’s method

The update rule of gradient descent is to find the minimizer of a quadratic approximation of a
given objective f . More precisely,

xt+1 ∈ argmin
x

{
f(xt) +∇f(xt)

>(x− xt) +
1

2ηt
‖x− xt‖22

}
.

Here, f(xt) +∇f(xt)
>(x− xt) is the first-order approximation of f around xt, and by adding the

proximity term corresponding to the step size ηt, the resulting function becomes a quadratic. When
f is twice-differentiable, the second-order approximation around xt is

f(xt) +∇f(xt)
>(x− xt) +

1

2
(x− xt)>∇2f(xt)(x− xt).

Hence, this is perhaps a better approximation than the one obtained by adding the proximity term
to the first-order approximation. The convexity of f implies that ∇2f(x) is positive seminidefinite.
If f is strictly convex, then ∇2f(x) is positive definite and thus invertible. Throughout this section,
we focus on the setting where f is twice-differentiable and strongly convex, in which case f is strictly
convex as well.

Let xt+1 be defined as the minimizer of the second-order approximation. Then, by the optimality
condition, we have

xt+1 = xt −∇2f(xt)
−1∇f(xt).

The algorithm the runs with this update rule is Newton’s method. The following two propositions
provide some intuition behind the direction −∇2f(xt)

−1∇f(xt).

Proposition 23.1. Direction d = −∇2f(xt)
−1∇f(xt) is a descent direction at x = xt.

Proof. Remember that direction d is a descent direction at xt if and only if ∇f(xt)
>d < 0. Note

that
∇f(xt)

>d = −∇f(xt)∇2f(xt)
−1∇f(xt)

which is strictly negative because the Hessian ∇2f(xt) is positive definite.

Moreover,

3

Proposition 23.2. Direction d = −∇2f(xt)
−1∇f(xt) is a (scaled) steepest direction with respect

to the quadratic norm ‖ · ‖∇2f(xt) defined as

‖y‖∇2f(xt) = (y>∇2f(xt)y)1/2.

Proof. Direction y is the steepest direction if and only if

y ∈ argmin
{
∇f(xt)

>y : ‖y‖∇2f(xt) ≤ 1
}

= argmin
{
∇f(xt)

>y : y>∇2f(xt)y ≤ 1
}
.

The Lagrangian function is defined as

∇f(xt)
>y + λ(y>∇2f(xt)y − 1).

Here, we can check that

y∗ =
1

∇f(xt)>∇2f(xt)−1∇f(xt)
d and λ∗ =

1

2

satisfy the KKT conditions. Note that ∇2f(xt)
−1 is also positive definite beacuse ∇2f(xt) is

positive definite, and therefore, ∇f(xt)
>∇2f(xt)

−1∇f(xt) is strictly positive as long as ∇f(xt) 6= 0.
Therefore, d is a scaled steepest direction.

Another intuition about using the direction d = −∇2f(xt)
−1∇f(xt) is about reducing the gradient.

The optimality condition is ∇f(x∗) = 0, so we want to find a direction d such that

∇f(xt + d) ≈ 0.

Note that
∇f(xt) +∇2f(xt)d

is the first-order Tayler approximation of ∇f(xt + d). Here, d = −∇2f(xt)
−1∇f(xt) what makes

∇f(xt) +∇2f(xt)d set to 0.

3.1 Gradient descent and Newton’s method

Let us consider the following quadratic minimization problem.

minimize f(u, v) =
1

2

[
u v

]> [M 0
0 m

] [
u
v

]
=

1

2
(Mu2 +mv2).

Here, the objective function f is M -smooth and m-strongly convex in the `2 norm. Therefore,
gradient descent converges to an ε-optimal solution after O((M/m) log(1/ε)) iterations.

Let us simulate gradient descent on f . Note that ∇f(u, v) =
[
Mu mv

]>
. Let x1 =

[
0 1

]>
.

Then, as f is M -smooth, gradient descent proceeds with

x2 = x1 −
1

M
∇f(x1) =

[
0
1

]
− 1

M

[
0
m

]
=
(

1− m

M

)[0
1

]
.

Moreover,

x3 = x2 −
1

M
∇f(x2) =

(
1− m

M

)[0
1

]
− 1

M

(
1− m

M

)[0
m

]
=
(

1− m

M

)2 [0
1

]
.

4

Hence, we can see that

xt+1 =
(

1− m

M

)t [0
1

]
.

As the optimal solution is
[
0 0

]>
, the convergence rate is indeed O((M/m) log(1/ε)).

What about Newton’s method? Note that

∇2f(u, v) =

[
M 0
0 m

]
.

Hence, Netwon’s method proceeds with

x2 = x1 −∇2f(x1)
−1∇f(x1) =

[
0
1

]
−
[
1/M 0

0 1/m

] [
0
m

]
=

[
0
0

]
.

Therefore, after one iteration, Newton’s method converges to the optimal solution. In fact, we will
see that for functions that are both smooth and strongly convex, the convergence rate of Newton’s
method is O(log log(1/ε)), which is much faster than gradient descent. Hence, if one wants to
achieve a high accuracy, Newton’s method is perhaps a better choice than gradient descent.

5

	Outline
	Dual of composite minimization
	Proximal gradient applied to the dual
	ADMM

	Newton's method
	Gradient descent and Newton's method

