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1 Outline

In this lecture, we study

• Moreau-Yosida smoothing.

• Proimxal point algorithm applied to the smoothed problem.

• Augmented Lagrangian method.

2 Moreau-Yosida smoothing

GIven a function f : Rd → R, the Moreau-Yosida smoothing of f is defined as

fη(x) := inf
u

{
f(u) +

1

2η
‖u− x‖22

}
for some η > 0. This is also referred to as the Moreau envelope. Note that

fη(x) = f
(
proxηf (x)

)
+

1

2η

∥∥proxηf (x)− x
∥∥2
2
.

Why do we care about this? There are several nice properties of the Moreau-Yosida smoothing.

2.1 Convexity and smoothness

Proposition 22.1. Let f : Rd → R be convex. Then fη is convex.

Proof. Let

g(x, u) = f(u) +
1

2η
‖u− x‖22.

Then g is convex in x, and it is convex in u. Moerover, fη(x) is a partial minimization of g(x, u)
obtained after minimizing out the variables u. Therefore, fη is convex.

Proposition 22.2. The Fenchel conjugate of fη is given by

f∗η (y) = f∗(y) +
η

2
‖y‖22.

Proof. Note that

fη(x) = inf
u+v=x

{
f(u) +

1

2η
‖v‖22

}
.

Hence, fη is the infimal convolution of f and ‖ · ‖22/(2η). This implies that

f∗η (y) = f∗(y) +

(
1

2η
‖ · ‖22

)∗
(y).
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Note that (
1

2η
‖ · ‖22

)∗
(y) = sup

v

{
y>v − 1

2η
‖v‖22

}
=
η

2
‖y‖22

where the last equality is deduced from the optimality condition.

As a direct consequence of Proposition 22.2, we deduce the the Moreau-Yosida smoothing is smooth.

Proposition 22.3. Let f : Rd → R be convex. Then its Moreau envelope fη is (1/η)-smooth in
the `2 norm.

Proof. First, as f is convex, fη is convex. Since fη is convex, it is continuous on Rd. As Rd is
closed, fη is a closed function. It follows from Proposition 22.2 that the Fenchel conjugate f∗η of fη
is η-strongly convex in the `2 norm. Then the Fenchel conjugate f∗∗η of f∗η is (1/η)-smooth in the
`2 norm. Lastly, as fη is closed and convex, f∗∗η = fη. Therefore, fη is also (1/η)-smooth in the `2
norm.

Let us consider an example.

Example 22.4. Let f(x) = ‖x‖1. Then

fη(x) =
d∑
i=1

1

η
Lη(xi)

where

Lη(c) =

{
η|c| − η2/2, if |c| ≥ η,
|c|2/2, if |c| ≤ η.

Here, Lη is called the Huber loss (see Figure 22.11).

Figure 22.1: Huber loss

1Image taken from http://yetanothermathprogrammingconsultant.blogspot.com/2021/09/

huber-regression-different-formulations.html
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2.2 Optimization of the Moreau envelope

Moreover, we can compute the gradient of the Moreau-Yosida smoothing.

Proposition 22.5. Let f : Rd → R be convex. Then

∇fη(x) = proxf∗/η

(
x

η

)
=

1

η
(x− proxηf (x)).

Proof. By Proposition 22.3, fη is smooth and thus differentiable. Moreover, as fη is convex and
closed, it follows that y = ∇fη(x) if and only if x ∈ ∂f∗η (y). Note that Proposition 22.2 implies
that

∂f∗η (y) = ∂f∗(y) + ηy∗.

Hence, x ∈ ∂f∗η (y) if and only if x− ηy∗ ∈ ∂f∗(y) which is equivalent to

1

η
x− y∗ ∈ 1

η
∂f∗(y).

Furthermore, this is equivalent to

proxf∗/η

(
x

η

)
= y∗.

By the Moreau decomposition theorem, we have

x = proxηf (x) + η proxf∗/η (x/η) ,

so
1

η
(x− proxηf (x)) = proxf∗/η

(
x

η

)
,

as required.

Proposition 22.6. Let f : Rd → R be closed. Then a minimizer of the Moreau-Yosida smoothing
fη is a minimizer of f .

Proof. By Proposition 22.5, it follows that

∇fη(x) =
1

η
(x− proxηf (x)).

Then, by the optimality condition, x∗ is a minimizer of fη if and only if

0 = ∇fη(x∗) =
1

η
(x∗ − proxηf (x∗))

which is equivalent to
x∗ = proxηf (x∗).

Note that x∗ = proxηf (x∗) holds if and only if

0 = x∗ − x∗ ∈ η∂f(x∗).

Therefore, x∗ = proxηf (x∗) if and only if x∗ is a minimizer of f .
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Therefore, the problem
minimize f(x)

is equivalent to solving

minimize fη(x) = inf
u

{
f(u) +

1

2η
‖u− x‖22

}
.

We know that fη is convex by Proposition 22.1. Hence, we can attempt to solve the problem by
gradient descent. By Proposition 22.5, the gradient of fη is given by

∇fη(x) =
1

η
(x− proxηf (x)).

Moreover, fη is (1/η)-smooth by Proposition 22.3. Hence, the gradient descent update rule proceeds
with step size η given as follows

xt+1 = xt − η∇fη(xt) = proxηf (xt).

This is precisely the update rule of the proximal point algorithm! This implies that the proximal
point algorithm is equivalent to gradient descent applied to the smoothed objective.

3 Augmented Lagrangian method

We consider

minimize f(x)

subject to Ax = b.

We observed that its dual is given by

maximize − f∗(−A>µ)− b>µ,

which is equivalent to

minimize f∗(−A>µ) + b>µ,

Remember that the dual subgradient method solves the dual problem. In this section, we derive
and study another algorithm that solves the dual formulation.

3.1 Proximal point algorithm applied to the dual

The proximal point algorithm proceeds with the following update rule.

µt+1 = argmin
µ

{
f∗(−A>µ) + b>µ+

1

2η
‖µ− µt‖22

}
.

By the optimality condition,

0 ∈ −A∂f∗(−A>µt+1) + b+
1

η
(µt+1 − µt).

Hence,
µt+1 = µt + η(Axt − b) where xt ∈ ∂f∗(−A>µt+1).
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Note that xt ∈ ∂f∗(−A>µt+1) holds if and only if −A>µt+1 ∈ ∂f(xt), which is equivalent to

0 ∈ ∂f(xt) +A>µt+1 ↔ 0 ∈ ∂f(xt) +A>(µt + η(Axt − b))
↔ 0 ∈ ∂f(xt) +A>µt + ηA>(Axt − b)

↔ xt ∈ argmin
x

{
f(x) + µ>t (Ax− b) +

η

2
‖Ax− b‖22

}
Hence, the proximal point algorithm for the dual problem works with the following update rule.

xt ∈ argmin
x

{
f(x) + µ>t (Ax− b) +

η

2
‖Ax− b‖22

}
µt+1 = µt + η(Axt − b).

This is precisely, the augmented Lagrangian method (ALM).

Algorithm 1 Augmented Lagrangian method

Initialize µ1.
for t = 1, . . . , T do

Find xt ∈ argminx
{
f(x) + µ>t (Ax− b) + η

2‖Ax− b‖
2
2

}
.

Update µt+1 = µt + η(Axt − b).
end for

Notice that the augmented Lagrangian method is the dual gradient ascent applied to the following
equivalent formulation of the primal problem.

minimize f(x) +
η

2
‖Ax− b‖22

subject to Ax = b.

Note that the objective is strongly convex, which implies that the dual objective becomes smooth.

3.2 Gradient ascent to the smoothed dual

The proximal point algorithm on the dual is given by

µt+1 = argmin
µ

{
f∗(−A>µ) + b>µ+

1

2η
‖µ− µt‖22

}
= proxηh(µt)

where
h(µ) = f∗(−A>µ) + b>µ.

Remember that the proximal point algorithm is equivalent to gradient descent on the smoothed
objective. The Moreau-Yosida smoothing of h is given by

hη(µ) = inf
γ

{
f∗(−A>γ) + b>γ +

1

2η
‖γ − µ‖22

}
.

Note that
minimize hη(µ) = − maximize − hη(µ)

is the dual of

minimize h∗η(y)

subject to − y = 0
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Here, what is h∗η? By Proposition 22.2, we have

h∗η(y) = h∗(y) +
η

2
‖y‖22

Note that

h∗(y) = sup
µ

{
y>µ− f∗(−A>µ)− b>µ

}
= sup

µ

{
(y − b)>µ− f∗(−A>µ)

}
= inf

x
{f(x) : −Ax = y − b} .

Then
h∗η(y) = inf

x
{f(x) : y = b−Ax}+

η

2
‖y‖22.

This implies that the dual problem is equivalent to

minimize f(x) +
η

2
‖b−Ax‖22

subject to Ax = b.
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