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1 Outline

In this lecture, we study

• Dual gradient ascent,

• Proximal point algorithm,

2 Dual gradient ascent

We consider

minimize f(x)

subject to Ax = b.

We observed that its dual is given by

maximize − f∗(−A⊤µ)− b⊤µ.

As f∗ is convex, the dual problem is a concave maximization problem. Let us apply the gradient
ascent method to the dual.

2.1 Superdifferential and the supergradient method

Definition 21.1. Given a concave function f ′ : Rd → R and a point x ∈ dom(f ′), the superdiffer-
ential of f ′ at x is defined as

∂f ′(x) =
{
g : f ′(y) ≤ f ′(x) + g⊤(y − x) ∀y ∈ dom(f ′)

}
.

Here, any g ∈ ∂f(x) is called a supergradient of f ′ at x.

Note that −f ′ is convex if f ′ is concave and that the subdifferential of −f ′, given by ∂(−f ′(x)) at
a point x, is precisely −∂f ′(x) = {−g : g ∈ ∂(−f ′(x))}. Hence, g is a supergradient of a concave
function f ′ at a point x ∈ dom(f ′) if and only if −g is a subgradient of −f ′ at x.

Furthermore, maximizing a concave function f ′ is equivalent to minimizing −f ′ that is convex.
Given a point xt, let gt be a supergradient of f ′ at xt. Then −gt is a subgradient of −f ′ at xt, and
the subgradient method applies the following update rule.

xt+1 = xt − ηt(−gt) = xt + ηtgt

for some step size ηt > 0. The algorithm that proceeds with this update rule is referred to as the
supergradient method.
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2.2 Supergradient method for the dual problem

Given µt, let gt ∈ ∂
(
−f∗(−A⊤µt)− b⊤µt

)
. Then the supergradient method applies the following

update rule.
µt+1 = µt + ηtgt.

Here, what is a supergradient gt? Note that

∂
(
−f∗(−A⊤µt)− b⊤µt

)
︸ ︷︷ ︸

superdifferential of −f∗(−A⊤µ)− b⊤µ at µ = µt

= − ∂
(
f∗(−A⊤µt) + b⊤µt

)
︸ ︷︷ ︸

subdifferential of f∗(−A⊤µ) + b⊤µ at µ = µt

= −

−A ∂f∗(−A⊤µt)︸ ︷︷ ︸
subdifferential of f∗(µ) at µ = −A⊤µt

+b


= A∂f∗(−A⊤µt)− b.

Hence, gt ∈ ∂
(
−f∗(−A⊤µt)− b⊤µt

)
if and only if

gt ∈ A∂f∗(−A⊤µt)− b.

Therefore,
gt = Axt − b for some xt ∈ ∂f∗(−A⊤µt).

Moreover, we have also observed that xt ∈ ∂f∗(−A⊤µt) if and only if −A⊤µt ∈ ∂f(xt). Here,
−A⊤µt ∈ ∂f(xt) holds if and only if 0 ∈ ∂f(xt) +A⊤µt which is equivalent to

xt ∈ argmin
x

f(x) + µ⊤
t Ax.

Note that µ⊤
t b remains constant as x changes, so xt ∈ argminx f(x) + µ⊤

t Ax is equivalent to

xt ∈ argmin
x

f(x) + µ⊤
t (Ax− b).

Therefore, the supergradient method applied to the dual problem proceeds with

xt ∈ argmin
x

f(x) + µ⊤
t (Ax− b),

µt+1 = µt + ηt(Axt − b).

Here, f(x) +µ⊤
t (Ax− b) is the Lagrangian function L(x, µ) at µ = µt. In words, the supergradient

method applied to the dual problem works as follows. At each iteration t with a given dual multiplier
µt, we find a minimizer of the Lagrangian function L(x, µt). Then we use the corresponding dual
supergradient Axt − b to obtain a new multiplier µt+1.

Algorithm 1 Supergradient method for the dual problem

Initialize µ1.
for t = 1, . . . , T − 1 do

Obtain xt ∈ argminx f(x) + µ⊤
t (Ax− b),

Update µt+1 = µt + ηt(Axt − b) for a step size ηt > 0.
end for

At each iteration, we find a minimizer of the Lagrangian function L(x, µt), which gives rise to an
unconstrained optimization problem. Hence, the dual approach is useful when there is a complex
system of constraints.
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2.3 Smoothness and strong convexity

Another motivation for using dual methods is that the dual objective can become smooth even if
the primal objective is not.

Theorem 21.2. Let f : Rd :→ R be closed and α-strongly convex in the ℓ2 norm. Then f∗ is
(1/α)-smooth in the ℓ2 norm.

Proof. Given y ∈ Rd, we have

f∗(y) = sup
x∈dom(f)

{
y⊤x− f(x)

}
.

Note that

x∗ ∈ ∂f∗(y) ↔ y ∈ ∂f(x∗)

↔ 0 ∈ y − ∂f(x∗)

↔ x∗ ∈ argmax
x∈dom(f)

{
y⊤x− f(x)

}
.

Since f is strongly convex, there exists a unique maximizer x∗ for the supremum. This implies that
the subdifferential of f∗ contains a unique point, and therefore, f∗ is differentiable.

Let y1 ∈ ∂f(x1) and y2 ∈ ∂f(x2). Since f is α-strongly convex, we have

f(x1) ≥ f(x2) + y⊤2 (x1 − x2) +
α

2
∥x1 − x2∥22,

f(x2) ≥ f(x1) + y⊤1 (x2 − x1) +
α

2
∥x2 − x1∥22.

Summing up these two inequalities, we obtain

(y1 − y2)
⊤(x1 − x2) ≥ α∥x1 − x2∥22.

Hence,

∥x1 − x2∥2 ≤
1

α
∥y1 − y2∥2.

As y1 ∈ ∂f(x1) and y2 ∈ ∂f(x2), it follows that x1 = ∇f∗(y1) and x2 = ∇f∗(y2). Therefore,

∥∇f∗(y1)−∇f∗(y2)∥2 ≤
1

α
∥y1 − y2∥2,

which implies that f∗ is (1/α)-smooth in the ℓ2 norm.

Remember that the subgradient method for strongly convex functions guarantees a convergence
rate of O(1/T ). However, the dual problem of a strongly convex function minimization is a smooth
convex function minimization, for which the accelerated gradient method guarantees a convergence
rate of O(1/T 2).

Theorem 21.3. Let f : Rd :→ R be a closed convex β-smooth function in the ℓ2 norm. Then f∗

is (1/β)-strongly convex in the ℓ2 norm.
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Proof. To show that f∗ is (1/β)-strongly convex in the ℓ2 norm, we will argue that

h(y) = f∗(y)− 1

2β
∥y∥22

is convex. Note that

∂h(y) = ∂f∗(y)− 1

β
y.

We will use the fact that if ∂h is monotone, then h is convex. In other words, it is sufficient to
show that for any x1 ∈ ∂f∗(y1) and x2 ∈ ∂f∗(y2), the following holds.

(y1 − y2)
⊤ ((x1 − (1/β)y1)− (x2 − (1/β)y2)) ≥ 0,

which is equivalent to

(y1 − y2)
⊤ (x1 − x2) ≥

1

β
∥y1 − y2∥22.

Remember that if f is β-smooth,

(∇f(x1)−∇f(x2))
⊤ (x1 − x2) ≥

1

β
∥∇f(x1)−∇f(x2)∥22.

Moreover, for any x1 ∈ ∂f∗(y1) and x2 ∈ ∂f∗(y2), we have y1 = ∇f(x1) and y2 = ∇f(x2). Then
the above inequality can be rewritten as

(y1 − y2)
⊤ (x1 − x2) ≥

1

β
∥y1 − y2∥22,

as required.

2.4 Dual gradient ascent for separable problems

We can use dual methods when the objective is separable while there is a system of linking con-
straints. We consider

minimize f1(x1) + f2(x2)

subject to A1x1 +A2x2 = b.

Let us derive its dual. The Lagrangian dual function is given by

inf
x1,x2

{
f1(x1) + f2(x2) + µ⊤(A1x1 +A2x2 − b)

}
= −b⊤µ+ inf

x1

{
f1(x1) + µ⊤A1x1

}
+ inf

x2

{
f2(x2) + µ⊤A2x2

}
= −b⊤µ− sup

x1

{
−f1(x1) + (−A⊤

1 µ)
⊤x1

}
− sup

x2

{
−f2(x2) + (−A⊤

2 µ)
⊤x2

}
= −b⊤µ− f∗

1 (−A⊤
1 µ)− f∗

2 (−A⊤
2 µ).

Therefore, the Lagrangian dual problem is given by

maximize − f∗
1 (−A⊤

1 µ)− f∗
2 (−A⊤

2 µ)− b⊤µ.

Given µt, let gt ∈ ∂
(
−f∗

1 (−A⊤
1 µt)− f∗

2 (−A⊤
2 µt)− b⊤µt

)
. We can argue that

∂
(
−f∗

1 (−A⊤
1 µt)− f∗

2 (−A⊤
2 µt)− b⊤µt

)
= A1∂f

∗
1 (−A⊤

1 µt) +A2∂f
∗
2 (−A⊤

2 µt)− b.
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Note that x1,t ∈ ∂f∗
1 (−A⊤

1 µt) if and only if −A⊤
1 µt ∈ ∂f1(x1,t). This is equvialent to x1,t ∈

argminx1

{
f1(x1) + µ⊤

t A1x1
}
. Similarly, x2,t ∈ ∂f∗

2 (−A⊤
2 µt) if and only if x2,t ∈ argminx2

{
f2(x2) + µ⊤

t A2x2
}
.

Therefore, the supergradient method applied to the dual problem proceeds with the following up-
date rule.

µt+1 = µt + ηt(A1x1,t +A2x2,t − b)

where

x1,t ∈ argmin
x1

{
f1(x1) + µ⊤

t A1x1

}
,

x2,t ∈ argmin
x2

{
f2(x2) + µ⊤

t A2x2

}
.

Algorithm 2 Supergradient method for the dual problem of a separable minimization

Initialize µ1.
for t = 1, . . . , T − 1 do

Obtain x1,t ∈ argminx1

{
f1(x1) + µ⊤

t A1x1
}
and x2,t ∈ argminx2

{
f2(x2) + µ⊤

t A2x2
}
.

µt+1 = µt + ηt(A1x1,t +A2x2,t − b) for a step size ηt > 0.
end for

Here, at each iteration, computing the iterates x1,t and x2,t can be done in parallel. For the primal
problem, the variables x1 and x2 are connected through the constraints A1x1+A2x2 = b. However,
for the dual method, we separate the variables and x1 and x2 by the Lagrangian multiplier.

3 Proximal point algorithm

Remember that the proximal gradient method works for the following composite minimization
problem.

minimize f(x) = g(x) + h(x).

The proximal gradient method proceeds with the update rule

xt+1 = proxηh(xt − η∇g(x)).

In this section, we discuss the proximal point method, which is a special case of proximal gradient,
and its application to the dual problem. Note that minimizing a closed convex function f can be
written as a (trivial) composite minimization as follows.

minimize f(x) = 0 + f(x).

Here, the first part is g = 0, which is trivially smooth, and the second part is h = f . Then the
corresponding proximal gradient update is given by

xt+1 = proxηf (xt).

The algorithm with this update rule is referred to as the proximal point method. As g = 0 is
smooth, the proximal point algorithm converges with a rate of O(1/T ).
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Algorithm 3 Proximal point algorithm

Initialize x1.
for t = 1, . . . , T do

Update xt+1 = proxηf (xt).
end for
Return xT+1.

3.1 Proximal point algorithm and gradient descent

Theoretically, we can use any function ht to run the proximal point algorithm, even if the objective
is not ht, in which case, the update rule corresponds to

xt+1 = proxηht
(xt).

Hence, at each time step t, we may use a different function ht hypothetically. Let us consider the
first-order approximation of the objective function f at x = xt.

ht(x) = f(xt) +∇f(xt)
⊤(x− xt).

We know that f(x) ≥ ht(x) for all x by convexity. Then what is the proximal point update with
ht? Note that

proxηht
(xt) = argmin

u

{
f(xt) +∇f(xt)

⊤(u− xt) +
1

2η
∥u− xt∥22

}
= xt − η∇f(xt).

Therefore, the proximal point algorithm with the first-order approximation of f is precisely gradient
descent. Hence, one can interpret gradient descent as an instance of the proximal point algorithm.

Let us now compare the proximal point algorithm with the objective f and gradient descent.

Lemma 21.4. proxηf (x) = (I + η∂f)−1(x).

Proof. Let u = proxηf (x). Remember that u = proxηf (x) if and only if x− u ∈ η∂f(u). Note that
x − u ∈ η∂f(u) is equvialent to x ∈ (I + η∂f)(u), which is equivalent to u ∈ (I + η∂f)−1(x). In
summary,

u = proxηf (x) ↔ u ∈ (I + η∂f)−1(x).

Since u is unique, it follows that u = (I + η∂f)−1(x).

By this lemma, the proximal point update rule can be written as

xt+1 = proxηf (xt) = (I + η∂f)−1(xt).

This is equivalent to xt = (I + η∂f)(xt+1) = xt+1 + η∇f(xt+1), which is

xt+1 = xt − η∇f(xt+1).

In contrast to gradient descent that proceeds with xt+1 = xt − η∇f(xt), we use the gradient at
xt+1.
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