1 Outline

In this lecture, we study

- Saddle point problem,
- Fenchel duality.

2 Fenchel conjugate

2.1 Some properties

The following statements hold.

- Let $f\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)$. Then $f^{*}\left(y_{1}, y_{2}\right)=f_{1}^{*}\left(y_{1}\right)+f_{2}^{*}\left(y_{2}\right)$.
- Let $g(x)=f(x)+c^{\top} x+d$. Then $g^{*}(y)=f^{*}(y-c)-d$.
- Let $g(x)=f(x-b)$. Then $g^{*}(y)=b^{\top} y+f^{*}(y)$.
- Let $f(x)=\inf _{u+v=x}\{g(u)+h(v)\}$. Then $f^{*}(y)=g^{*}(y)+h^{*}(y)$.

Lemma 20.1. For any function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, its Fenchel conjugate f^{*} is closed and convex.
Proof. We have already observed that f^{*} is convex. Let $h_{x}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ for any $x \in \operatorname{dom}(f)$ be defined as $h_{x}(y)=y^{\top} x-f(x)$. Note that

$$
\operatorname{epi}\left(h_{x}\right)=\left\{(y, t) \in \mathbb{R}^{d} \times \mathbb{R}: t \geq y^{\top} x+f(x)\right\}
$$

is closed. By definition, we have $f^{*}(y)=\sup _{x \in \operatorname{dom}(f)}\left\{h_{x}(y)\right\}$, implying in turn that

$$
\operatorname{epi}\left(f^{*}\right)=\bigcap_{x \in \operatorname{dom}(f)} \operatorname{epi}\left(h_{x}\right) .
$$

As the intersection of arbitrarily many closed sets is closed, $\operatorname{epi}\left(f^{*}\right)$ is closed, and therefore, f^{*} is closed.

Lemma 20.2. For any function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, we have $f^{* *} \leq f$.
Proof. Let $x \in \operatorname{dom}(f)$. Note that if $x-z \neq 0$, then $\sup _{y \in \mathbb{R}^{d}}\left\{y^{\top}(x-z)+f(z)\right\}=+\infty$. If $z=x$, we have $\sup _{y \in \mathbb{R}^{d}}\left\{y^{\top}(x-z)+f(z)\right\}=f(x)$. Therefore,

$$
f(x)=\inf _{z \in \operatorname{dom}(f)} \sup _{y \in \mathbb{R}^{d}}\left\{y^{\top}(x-z)+f(z)\right\} .
$$

Note that

$$
\begin{aligned}
\inf _{z \in \operatorname{dom}(f)} \sup _{y \in \mathbb{R}^{d}}\left\{y^{\top}(x-z)+f(z)\right\} & \geq \sup _{y \in \mathbb{R}^{d}} \inf _{z \in \operatorname{dom}(f)}\left\{y^{\top}(x-z)+f(z)\right\} \\
& =\sup _{y \in \mathbb{R}^{d}}\left\{y^{\top} x+\inf _{z \in \operatorname{dom}(f)}\left\{-y^{\top} z+f(z)\right\}\right\} \\
& =\sup _{y \in \mathbb{R}^{d}}\left\{y^{\top} x-\sup _{z \in \operatorname{dom}(f)}\left\{y^{\top} z-f(z)\right\}\right\} \\
& =\sup _{y \in \mathbb{R}^{d}}\left\{y^{\top} x-f^{*}(y)\right\} \\
& \geq \sup _{y \in \operatorname{dom}\left(f^{*}\right)}\left\{y^{\top} x-f^{*}(y)\right\} \\
& =f^{* *}(x) .
\end{aligned}
$$

Therefore, $f(x) \geq f^{* *}(x)$ for any $x \in \operatorname{dom}(f)$, and thus $f \geq f^{* *}$.
When f is closed and convex, the equality holds, i.e., $f^{* *}=f$. To show this, we need the following theorem.

Theorem 20.3 (Strict point-to-convex set separation). Let $C \subseteq \mathbb{R}^{d}$ be a closed convex set and $y \notin C$. Then $\inf _{x \in C}\|x-y\|>0$. Furthermore, there exists $\alpha \in \mathbb{R}^{d}$ and $\beta \in \mathbb{R}$ such that

$$
\begin{aligned}
& \alpha^{\top} x>\beta \quad \forall x \in C, \\
& \alpha^{\top} y<\beta .
\end{aligned}
$$

Lemma 20.4. For a closed convex function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, we have $f^{* *}=f$.
Proof. Next, assume that f is closed and convex. We will show that epi $(f)=\operatorname{epi}\left(f^{* *}\right)$. As $f \geq f^{* *}$, we already know that epi $(f) \subseteq \operatorname{epi}\left(f^{* *}\right)$. Suppose for a contradiction that there exists \bar{x} such that $\left(\bar{x}, f^{* *}(\bar{x})\right) \notin \operatorname{epi}(f)$. Then, by Theorem 20.3, there exists $\alpha \in \mathbb{R}^{d}, \gamma \in \mathbb{R}$, and $\beta \in \mathbb{R}$ such that

$$
\begin{aligned}
\alpha^{\top} x+\gamma t & >\beta \quad \forall(x, t) \in \operatorname{epi}(f), \\
\alpha^{\top} \bar{x}+\gamma f^{* *}(\bar{x}) & <\beta .
\end{aligned}
$$

Let $\delta=\beta-\left(\alpha^{\top} \bar{x}+\gamma f^{* *}(\bar{x})\right)>0$. Then for any $(x, t) \in \operatorname{epi}(f)$,

$$
\left(\alpha^{\top} x+\gamma t\right)-\left(\alpha^{\top} \bar{x}+\gamma f^{* *}(\bar{x})\right)>\beta-\left(\alpha^{\top} \bar{x}+\gamma f^{* *}(\bar{x})\right)=\delta>0 .
$$

Here, t can be arbitrarily large with $(x, t) \in \operatorname{epi}(f)$, so $\gamma \geq 0$. Suppose that $\gamma=0$. Let ϵ be a sufficiently small number and $\bar{y} \in \operatorname{dom}\left(f^{*}\right)$. Now consider

$$
\begin{aligned}
& \left((\alpha-\epsilon \bar{y})^{\top} x+\epsilon t\right)-\left((\alpha-\epsilon \bar{y})^{\top} \bar{x}+\epsilon f^{* *}(\bar{x})\right)>\delta-\epsilon\left(\bar{y}^{\top} x-t+\bar{y}^{\top} \bar{x}+f^{* *}(\bar{x})\right) . \\
& \quad \inf _{(x, t) \in \operatorname{epi}(f)}\left\{\left((\alpha-\epsilon \bar{y})^{\top} x+\epsilon t\right)-\left((\alpha-\epsilon \bar{y})^{\top} \bar{x}+\epsilon f^{* *}(\bar{x})\right)\right\} \\
& \quad \geq \inf _{(x, t) \in \operatorname{epi}(f)}\left\{\delta-\epsilon\left(\bar{y}^{\top} x-t+\bar{y}^{\top} \bar{x}+f^{* *}(\bar{x})\right)\right\} \\
& \geq \inf _{x \in \operatorname{dom}(f)}\left\{\delta-\epsilon\left(\bar{y}^{\top} x-f(x)+\bar{y}^{\top} \bar{x}+f^{* *}(\bar{x})\right)\right\} \\
& \quad=\delta-\epsilon\left(f^{*}(\bar{y})-\bar{y}^{\top} \bar{x}+f^{* *}(\bar{x})\right) .
\end{aligned}
$$

Making ϵ sufficiently small, we have

$$
\inf _{(x, t) \in \operatorname{epi}(f)}\left\{\left((\alpha-\epsilon \bar{y})^{\top} x+\epsilon t\right)-\left((\alpha-\epsilon \bar{y})^{\top} \bar{x}+\epsilon f^{* *}(\bar{x})\right)\right\}>0 .
$$

Therefore, we have just argued that there exists $\alpha \in \mathbb{R}^{d}, \gamma \in \mathbb{R}$, and $\delta>0$ such that $\gamma>0$ and

$$
\inf _{(x, t) \in \operatorname{epi}(f)}\left\{\left(\alpha^{\top} x+\gamma t\right)-\left(\alpha^{\top} \bar{x}+\gamma f^{* *}(\bar{x})\right)\right\} \geq \delta>0
$$

Then

$$
\inf _{(x, t) \in \operatorname{epi}(f)}\left\{(\alpha / \gamma)^{\top}(x-\bar{x})+t-f^{* *}(\bar{x})\right\} \geq \delta / \gamma>0
$$

Note that

$$
\begin{aligned}
\inf _{(x, t) \in \operatorname{epi}(f)}\left\{(\alpha / \gamma)^{\top}(x-\bar{x})+t-f^{* *}(\bar{x})\right\} & =\inf _{x \in \operatorname{dom}(f)}\left\{(\alpha / \gamma)^{\top}(x-\bar{x})+f(x)-f^{* *}(\bar{x})\right\} \\
& =(-\alpha / \gamma)^{\top} \bar{x}-f^{* *}(\bar{x})-\sup _{x \in \operatorname{dom}(f)}\left\{(-\alpha / \gamma)^{\top} x-f(x)\right\} \\
& =(-\alpha / \gamma)^{\top} \bar{x}-f^{* *}(\bar{x})-f^{*}(-\alpha / \gamma) \\
& \leq(-\alpha / \gamma)^{\top} \bar{x}-(-\alpha / \gamma)^{\top} \bar{x} \\
& =0
\end{aligned}
$$

where the inequality follows from the Fenchel-Young inequality.

2.2 Moreau decomposition

Remember that for a quadratic function with a positive definite matrix given by

$$
f(x)=\frac{1}{2} x^{\top} Q x+p^{\top} x
$$

we have $\nabla f^{*}(y)=(\nabla f)^{-1}(y)$. This is implies that if $y=\nabla f(x)$, then $x=\nabla f^{*}(y)$. In general, the subdifferential of the conjugate is the inverse of the subdifferential.

Theorem 20.5. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a closed and convex function. Then the following statements are equivalent.
(i) $y \in \partial f(x)$,
(ii) $x \in \partial f^{*}(y)$,
(iii) $y^{\top} x=f(x)+f^{*}(y)$.

Proof. Assume that $\bar{y} \in \partial f(\bar{x})$. Then $\bar{x} \in \operatorname{dom}(f)$ and $0 \in-\bar{y}+\partial f(\bar{x})$. Consider

$$
f^{*}(\bar{y})=\sup _{x \in \operatorname{dom}(f)}\left(\bar{y}^{\top} x-f(x)\right)=-\inf _{x \in \operatorname{dom}(f)}\left(-\bar{y}^{\top} x+f(x)\right) .
$$

Since $0 \in-\bar{y}+\partial f(\bar{x}), \bar{x}$ is the minimizer, and therefore,

$$
f^{*}(\bar{y})=-\left(-\bar{y}^{\top} \bar{x}+f(\bar{x})\right)=\bar{y}^{\top} \bar{x}-f(\bar{x}) .
$$

Hence, $\bar{y} \in \operatorname{dom}\left(f^{*}\right)$. Again, the definition of $f^{*}(y)$ implies that for any $y \in \operatorname{dom}\left(f^{*}\right)$,

$$
f^{*}(y) \geq y^{\top} \bar{x}-f(\bar{x})=(y-\bar{y})^{\top} \bar{x}+f^{*}(\bar{y}) .
$$

Therefore, \bar{x} is a subgradient of f^{*} at \bar{y}, and thus $\bar{x} \in \partial f^{*}(\bar{y})$. Hence, we have just proved the direction $(i) \rightarrow(i i i) \rightarrow(i i)$. Since f is closed and convex, f^{*} is closed and convex and $f=f^{* *}$. Then, by symmetry, we can also argue that $(i i) \rightarrow(i i i) \rightarrow(i)$. Therefore, $(i),(i i)$, and (iii) are all equivalent.
Using the theorem, we can show the following result.
Theorem 20.6 (Moreau decomposition). Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a closed convex function. Then

$$
x=\operatorname{prox}_{f}(x)+\operatorname{prox}_{f^{*}}(x) .
$$

Proof. Let $u=\operatorname{prox}_{f}(x)$, then $x-u \in \partial f(u)$. This implies that $u \in \partial f^{*}(x-u)$. Let $v=x-u$. Then we have $x-v \in \partial f^{*}(v)$, implying in turn that $v=\operatorname{prox}_{f^{*}}(x)$. Therefore,

$$
\operatorname{prox}_{f}(x)+\operatorname{prox}_{f^{*}}(x)=u+v=u+x-u=x,
$$

as required.
Example 20.7. Let $V \subseteq \mathbb{R}^{d}$ be a linear subspace, and let $f=I_{V}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be the indicator function of U. Note that

$$
f^{*}(y)=\sup _{x \in V}\left\{y^{\top} x\right\}=I_{V^{\perp}}(y) .
$$

Then

$$
\operatorname{prox}_{f}(x)=\underset{u \in \mathbb{R}^{d}}{\operatorname{argmin}}\left\{I_{V}(u)+\frac{1}{2}\|u-x\|_{2}^{2}\right\}=\operatorname{proj}_{V}(x)
$$

and

$$
\operatorname{prox}_{f^{*}}(x)=\underset{u \in \mathbb{R}^{d}}{\operatorname{argmin}}\left\{I_{V^{\perp}}(u)+\frac{1}{2}\|u-x\|_{2}^{2}\right\}=\operatorname{proj}_{V^{\perp}}(x) .
$$

Therefore, the Moreau decomposition theorem states that

$$
x=\operatorname{proj}_{V}(x)+\operatorname{proj}_{V^{\perp}}(x) .
$$

2.3 Fenchel dual

Consider the following composite optimization problem.

$$
\begin{equation*}
\operatorname{minimize} \quad f(x)+g(A x) \tag{20.1}
\end{equation*}
$$

for some matrix $A \in \mathbb{R}^{m \times d}$. This problem is equivalent to

$$
\begin{aligned}
\text { minimize } & f(x)+g(y) \\
\text { subject to } & y=A x
\end{aligned}
$$

Then the Lagrangian dual function is given by

$$
\begin{aligned}
\inf _{x, y} f(x)+g(y)+\mu^{\top}(A x-y) & =-\sup _{x, y}\left\{-f(x)-g(y)+\mu^{\top}(-A x+y)\right\} \\
& =-\sup _{x, y}\left\{\left(-A^{\top} \mu\right)^{\top} x-f(x)+\mu^{\top} y-g(y)\right\} \\
& =-\sup _{x}\left\{\left(-A^{\top} \mu\right)^{\top} x-f(x)\right\}-\sup _{x}\left\{\mu^{\top} y-g(y)\right\} \\
& =-\sup _{x}\left\{\left(-A^{\top} \mu\right)^{\top} x-f(x)\right\}-\sup _{x}\left\{\mu^{\top} y-g(y)\right\} \\
& =-f^{*}\left(-A^{\top} \mu\right)-g^{*}(\mu) .
\end{aligned}
$$

Therefore, the Lagrangian dual problem is given by

$$
\operatorname{maximize} \quad-f^{*}\left(-A^{\top} \mu\right)-g^{*}(\mu) .
$$

Moreover, note that(20.1) is linearly constrained. If f and g are convex, then Slater's condition holds (assuming $\operatorname{dom}(f)=\mathbb{R}^{d}$ and $\operatorname{dom}(g)=\mathbb{R}^{m}$), in which case, strong duality holds. Therefore,

$$
\begin{aligned}
\operatorname{minimize} \quad f(x)+g(A x) & =\min _{x, y} \max _{\mu} f(x)+g(y)+\mu^{\top}(A x-y) \\
& =\max _{\mu} \min _{x, y} f(x)+g(y)+\mu^{\top}(A x-y) \\
& =\text { maximize } \quad-f^{*}\left(-A^{\top} \mu\right)-g^{*}(\mu) .
\end{aligned}
$$

Example 20.8. Given a convex set C, consider

$$
\begin{aligned}
\text { minimize } & f(x) \\
\text { subject to } & A x-b \in C .
\end{aligned}
$$

Using the indicator function, it is equivalent to

$$
\text { minimize } f(x)+I_{C}(A x-b) \text {. }
$$

We can set $g(y)=I_{C}(y-b)$. Then

$$
g^{*}(\mu)=\sup _{u-b \in C}\left\{\mu^{\top} u\right\}=\sup _{u \in C}\left\{\mu^{\top}(u+b)\right\}=b^{\top} \mu+I_{C}^{*}(\mu) .
$$

Hence, the Fenchel dual is given by

$$
\operatorname{maximize} \quad-b^{\top} \mu-f^{*}\left(-A^{\top} \mu\right)-I_{C}^{*}(\mu)
$$

Example 20.9. Consider

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & A x=b
\end{aligned}
$$

The constraint is equivalent to $A x-b \in\{0\}$. Since $\{0\}$ is a trivial vector space and $(\{0\})^{\perp}=\mathbb{R}^{d}$, we have that $I_{\{0\}}^{*}(y)=0$ for any $y \in \mathbb{R}^{d}$. Then the corresponding dual is

$$
\text { maximize } \quad-b^{\top} \mu-f^{*}\left(-A^{\top} \mu\right)
$$

Example 20.10. Consider

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & \|A x-b\| \leq 1
\end{aligned}
$$

The constraint is equivalent to $A x-b \in C=\{y:\|y\| \leq 1\}$. Note that

$$
I_{C}^{*}(\mu)=\sup _{\|y\| \leq 1} \mu^{\top} y=\|\mu\|_{*} .
$$

In this case, the Fenchel dual is given by

$$
\operatorname{maximize} \quad-b^{\top} \mu-f^{*}\left(-A^{\top} \mu\right)-\|\mu\|_{*} .
$$

Example 20.11. Consider

$$
\operatorname{minimize} \quad f(x)+\|x\|
$$

for some $\lambda>0$. Here, define $g(y)=\|y\|$. Note that

$$
g^{*}(\mu)=\sup _{u}\left\{\mu^{\top} u-\|u\|\right\}=I_{C}(\mu)
$$

where $C=\left\{u:\|u\|_{*} \leq 1\right\}$. Then the corresponding dual is

$$
\begin{array}{cc}
\operatorname{maximize} & -f^{*}(-\mu) \\
\text { subject to } & \|\mu\|_{*} \leq 1
\end{array}
$$

