1 Outline

In this lecture, we study

- Saddle point problem,
- Fenchel duality.

2 Saddle point problem

Consider the following inequality constrained problem.

minimize
$$f(x)$$

subject to $g_i(x) \le 0$ for $i = 1, ..., m$. (19.1)

Note that

$$\max_{\lambda \ge 0} \mathcal{L}(x, \lambda) = \max_{\lambda \ge 0} \left\{ f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) \right\}.$$

If $g_i(x) > 0$ for some $i \in [m]$, then we can send λ_i to $+\infty$, making $\mathcal{L}(x,\lambda)$ arbitrarily large. On the other hand, if $g_i(x) \leq 0$ for all $i \in [m]$, then $\max_{\lambda \geq 0} \mathcal{L}(x,\lambda)$ is attained at $\lambda = 0$, in which case, $\max_{\lambda \geq 0} \mathcal{L}(x,\lambda) = f(x)$. This observation implies that

$$\min_{x} \max_{\lambda \ge 0} \mathcal{L}(x, \lambda) = \min_{x} \left\{ f(x) : g_i(x) \le 0 \text{ for } i = 1, \dots, m \right\}.$$

Remember that the Lagrangian dual problem is given by

$$\max_{\lambda \ge 0} q(\lambda) = \max_{\lambda \ge 0} \min_{x} \mathcal{L}(x, \lambda)$$

Then the weak duality theorem states that

$$\min_{x} \max_{\lambda \ge 0} \mathcal{L}(x, \lambda) \ge \max_{\lambda \ge 0} \min_{x} \mathcal{L}(x, \lambda).$$

Moreover, if strong duality holds, then the equality holds as follows.

$$\min_{x} \max_{\lambda \ge 0} \mathcal{L}(x, \lambda) = \max_{\lambda \ge 0} \min_{x} \mathcal{L}(x, \lambda).$$

More generally, consider a function $\phi(x, y)$ that is convex in x and concave in y. Then

$$\min_{x \in X} \max_{y \in Y} \phi(x, y) \tag{19.2}$$

where sets X and Y are convex is called a saddle point problem. Under certain conditions on X and Y, the minimum and maximum can be swapped.

$$\min_{x \in X} \max_{y \in Y} \phi(x, y) = \max_{y \in Y} \min_{x \in X} \phi(x, y).$$

Such a result is called a minimax theorem, and the strong Lagrangian duality theorem is an example.

2.1 Zero-sum game

Suppose that we have two adversarial players. Player 1 chooses from d actions $i \in [d]$ while player 2 chooses from m actions $j \in [m]$. If player 1 chooses $i \in [d]$ and player 2 chooses $j \in [m]$, then player 1 loses a_{ij} while player gains a_{ij} . This is called a zero-sum game.

Both players can randomize their strategies, meaning that player 1 chooses $x \in \Delta_d = \{x \in [0, 1]^d : 1^{\top}x = 1\}$ and player 2 chooses $y \in \Delta_m = \{y \in [0, 1]^m : 1^{\top}y = 1\}$. Then $x^{\top}Ay$ is the expected loss for player 1 and also the expected gain for player 2.

Suppose that player 1 knows player 2's strategy, given by a vector $y \in \Delta_m$. Then player 1 will choose a strategy $x \in \Delta_d$ so that the expected loss can be minimized and incurs a loss of

$$\min_{x \in \Delta_d} x^\top A y.$$

Given that player 2 knows player 1 will do this for any y, player 2 should choose y to maximize the expected gain so that player 2 obtains a gain of

$$\max_{y \in \Delta_m} \min_{x \in \Delta_d} x^\top A y.$$

In fact, von Neumann's minimax theorem states that it does not matter who moves first, because

$$\max_{y \in \Delta_m} \min_{x \in \Delta_d} x^\top A y = \min_{x \in \Delta_d} \max_{y \in \Delta_m} x^\top A y.$$

2.2 Saddle point optimality

In general, we have the following relationship.

Theorem 19.1. Consider the saddle point problem (19.2). Then the following statement holds.

$$\min_{x \in X} \max_{y \in Y} \phi(x, y) \ge \max_{y \in Y} \min_{x \in X} \phi(x, y).$$

Proof. Note that for any $(x, y) \in X \times Y$, we have $\phi(x, y) \ge \min_{x \in X} \phi(x, y)$. Taking the maximum of each side over $y \in Y$, we obtain $\max_{y \in Y} \phi(x, y) \ge \max_{y \in Y} \min_{x \in X} \phi(x, y)$. As this inequality holds for every $x \in X$, taking the minimum of the left-hand side over $x \in X$ preserves the inequality. If done so, we deduce that $\min_{x \in X} \max_{y \in Y} \phi(x, y) \ge \max_{y \in Y} \min_{x \in X} \phi(x, y)$, as required. \Box

We say that a solution $(x^*, y^*) \in X \times Y$ is a saddle point to the problem $\min_{x \in X} \max_{y \in Y} \phi(x, y)$ if

$$\phi(x^*, y) \le \phi(x^*, y^*) \le \phi(x, y^*)$$

for all $(x, y) \in X \times Y$. If (x^*, y^*) is a saddle point, then

$$\phi(x^*, y^*) = \max_{y \in Y} \phi(x^*, y) = \min_{x \in X} \phi(x, y^*).$$

Theorem 19.2. If (x^*, y^*) is a saddle point, then

$$\min_{x \in X} \max_{y \in Y} \phi(x, y) = \phi(x^*, y^*) = \max_{y \in Y} \min_{x \in X} \phi(x, y).$$

Proof. By definition, we obtain

$$\max_{y \in Y} \phi(x^*, y) \le \phi(x^*, y^*) \le \min_{x \in X} \phi(x, y^*).$$

Moreover, this implies that

$$\min_{x \in X} \max_{y \in Y} \phi(x^*, y) \le \phi(x^*, y^*) \le \max_{x \in X} \min_{x \in X} \phi(x, y^*).$$

By Theorem 19.1, it follows that the inequalities must hold with equality. A saddle point problem combines two convex optimization problems into one.

$$\begin{aligned} & \text{Primal}: \quad \min_{x \in X} \left\{ \overline{\phi}(x) := \max_{y \in Y} \phi(x, y) \right\} \\ & \text{Dual}: \quad \max_{y \in Y} \left\{ \underline{\phi}(y) := \min_{x \in X} \phi(x, y) \right\}. \end{aligned}$$

For any $(\bar{x}, \bar{y}) \in X \times Y$, Theorem 19.1 implies that

$$\overline{\phi}(\overline{x}) = \max_{y \in Y} \phi(\overline{x}, y) \ge \min_{x \in X} \phi(x, \overline{y}) = \underline{\phi}(\overline{y}).$$

We say that a point $(\bar{x}, \bar{y}) \in X \times Y$ is an ϵ -saddle point if

$$0 \le \overline{\phi}(\bar{x}) - \underline{\phi}(\bar{y}) = \max_{y \in Y} \phi(\bar{x}, y) - \min_{x \in X} \phi(x, \bar{y}) \le \epsilon.$$

Note that if $(\bar{x}, \bar{y}) \in X \times Y$ is an ϵ -saddle point, then

$$\overline{\phi}(\overline{x}) - \min_{x \in X} \overline{\phi}(x) \le \epsilon,$$
$$\max_{y \in Y} \underline{\phi}(y) - \underline{\phi}(\overline{y}) \le \epsilon.$$

2.3 Primal-dual algorithm for saddle point problems

Let us consider an algorithm for solving the saddle point problem, whose pseudo-code is given as in Algorithm 1. The algorithm is called the *primal-dual subgradient method*. Note that at each

Algorithm 1 Primal-dual subgradient method

Initialize $x_1 \in X$ and $y_1 \in Y$. for t = 1, ..., T - 1 do Obtain $g_{x,t} \in \partial_x \phi(x_t, y_t)$ and $g_{y,t} \in \partial_y \phi(x_t, y_t)$. Update $x_{t+1} = \operatorname{proj}_X(x_t - \eta_t g_{x,t})$ and $y_{t+1} = \operatorname{proj}_Y(y_t + \eta_t g_{y,t})$ for some step size $\eta_t > 0$. end for Return x_{T+1} .

iteration, we simultaneously update both the primal variables x and the dual variables y. We assumed that $\phi(x, y)$ is convex in x and concave in y. $\partial_x \phi(x, y)$ is the subdifferential of $\phi(x, y)$ for a fixed y, and $\partial_y \phi(x, y)$ is the superdifferential of $\phi(x, y)$ for a fixed x. The following lemma is analogous to the subgradient inequality for convex functions.

Using this lemma, we can show that

Theorem 19.3. Let \bar{x}_T and \bar{y}_T be defined as

$$\bar{x}_T = \left(\sum_{t=1}^T \eta_t\right)^{-1} \sum_{t=1}^T \eta_t x_t, \quad \bar{y}_T = \left(\sum_{t=1}^T \eta_t\right)^{-1} \sum_{t=1}^T \eta_t y_t.$$

Then for any $(x, y) \in X \times Y$,

$$\phi(\bar{x}_T, y) - \phi(x, \bar{y}_T) \le \frac{1}{2\sum_{t=1}^T \eta_t} \left(\|(x_1, y_1) - (x, y)\|_2^2 + \sum_{t=1}^T \eta_t^2 \|(g_{x,t}, g_{y,t})\|_2^2 \right).$$

Assuming that $||(g_x, g_y)||_2^2 \leq L^2$ for any $g_x \in \partial_x \phi(x, y)$ and $g_y \in \partial_y \phi(x, y)$ and that $||(x_1, y_1) - (x, y)||_2^2 \leq R^2$, we can set $\eta_t = R/(L\sqrt{T})$. Then for any $(x, y) \in X \times Y$,

$$\phi(\bar{x}_T, y) - \phi(x, \bar{y}_T) \le \frac{LR}{\sqrt{T}}$$

In particular,

$$\max_{y \in Y} \phi(\bar{x}_T, y) - \min_{x \in X} \phi(x, \bar{y}_T) \le \frac{LR}{\sqrt{T}}.$$

Then setting $T = O(1/\epsilon^2)$, we know that (\bar{x}_T, \bar{y}_T) is an ϵ -saddle point.

3 Fenchel duality

The Fenchel conjugate of a function $f : \mathbb{R}^d \to \mathbb{R}$ is given by

$$f^*(y) = \sup_{x \in \operatorname{dom}(f)} \left\{ y^\top x - f(x) \right\}$$

As $y^{\top}x - f(x)$ is linear in y, the conjugate function is always convex, regardless of f. Lemma 19.4 (Fenchel-Young inequality). For $x \in dom(f)$ and $y \in dom(f^*)$,

 $f(x) + f^*(y) \ge y^\top x.$ Proof. Note that $f^*(y) = \sup_{x \in \text{dom}(f)} (y^\top x - f(x)) \ge y^\top x - f(x).$

We discussed Lagrangian duality, and in fact, we can derive the Lagrangian dual function based on the conjugate function. Consider

minimize
$$f(x)$$

subject to $Ax = b$ (19.3)
 $Cx \le d.$

Then the associated Lagrangian dual function is given by

$$q(\lambda,\mu) = \min_{x} \left\{ f(x) + \lambda^{\top} (Cx - d) + \mu^{\top} (Ax - b) \right\}$$

= $-d^{\top}\lambda - b^{\top}\mu + \min_{x} \left\{ f(x) + (C^{\top}\lambda + A^{\top}\mu)^{\top}x \right\}$
= $-d^{\top}\lambda - b^{\top}\mu - \sup_{x} \left\{ -f(x) - (C^{\top}\lambda + A^{\top}\mu)^{\top}x \right\}$
= $-d^{\top}\lambda - b^{\top}\mu - f^{*}(-C^{\top}\lambda - A^{\top}\mu).$

Note that the domain of $q(\lambda, \mu)$ is

$$\operatorname{dom}(q) = \left\{ (\lambda, \mu) : -C^{\top} \lambda - A^{\top} \mu \in \operatorname{dom}(f^*) \right\}$$

Then the Lagrangian dual problem is given by

maximize
$$-d^{\top}\lambda - b^{\top}\mu - f^*(-C^{\top}\lambda - A^{\top}\mu)$$

subject to $\lambda \ge 0$
 $-C^{\top}\lambda - A^{\top}\mu \in \operatorname{dom}(f^*).$ (19.4)

In particular, when there is no inequality constraint, the associated Lagrangian dual function is given by

$$q(\mu) = -b^{\top}\mu - f^*(-A^{\top}\mu),$$

and the Lagrangian dual problem is given by

maximize
$$-b^{\top}\mu - f^*(-A^{\top}\mu)$$

subject to $-A^{\top}\mu \in \operatorname{dom}(f^*).$ (19.5)

3.1 Fenchel conjugate examples

Example 19.5. When $f(x) = c^{\top}x + d$ over $x \in \mathbb{R}^d$,

$$f^*(y) = \sup_{x \in \mathbb{R}^d} (y^\top x - c^\top x - d) = \begin{cases} -d, & \text{if } y = c, \\ +\infty, & \text{otherwise.} \end{cases}$$

Example 19.6. When $f(x) = \log(1 + e^x)$ over $x \in \mathbb{R}$,

$$f^*(y) = \sup_{x \in \mathbb{R}} (yx - \log(1 + e^x)) = \begin{cases} y \log y + (1 - y) \log(1 - y), & \text{if } 0 < y < 1, \\ 0, & \text{if } y \in \{0, 1\}, \\ +\infty, & \text{otherwise.} \end{cases}$$

Example 19.7. When $f(x) = (1/2)x^{\top}Qx + p^{\top}x$ over $x \in \mathbb{R}^d$ for some positive definite Q,

$$f^*(y) = \sup_{x \in \mathbb{R}} \left(y^\top x - \frac{1}{2} x^\top Q x - p^\top x \right)$$

Note that the maximum is attained at $x = Q^{-1}(y - p)$. Therefore,

$$f^*(y) = \frac{1}{2}(y-p)^{\top}Q^{-1}(y-p).$$

Here,

$$\nabla f^*(y) = Q^{-1}(y-p),$$

which implies that $\nabla f(\nabla f^*(y))=y$ and

$$\nabla f^*(y) = (\nabla f)^{-1}(y).$$

Example 19.8. When $f(x) = \sum_{i=1}^{d} x_i \log x_i$ over $x \in \mathbb{R}^{d}_{++}$,

$$f^*(y) = \sup_{x \in \mathbb{R}^d_{++}} \left(y^\top x - \sum_{i=1}^d x_i \log x_i \right) = \sup_{x \in \mathbb{R}^d_{++}} \left(\sum_{i=1}^d x_i (y_i - \log x_i) \right) = \sum_{i=1}^d e^{y_i - 1}$$

Example 19.9. When $f(X) = -\log \det X$ over $X \in \mathbb{S}^{d}_{++}$,

$$f^*(Y) = \sup_{X \in \mathbb{S}_{++}^d} \left(\operatorname{tr}(Y^\top X) + \log \det X \right).$$

It is known that $\nabla \log \det X = X^{-1}$. Then the supremum is attained at $X = -Y^{-1}$, and therefore,

$$f^*(Y) = -d - \log \det(-Y).$$