1 Outline

In this lecture, we study

- Saddle point problem,
- Fenchel duality.

2 Saddle point problem

Consider the following inequality constrained problem.

$$
\begin{align*}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0 \quad \text { for } i=1, \ldots, m \tag{19.1}
\end{align*}
$$

Note that

$$
\max _{\lambda \geq 0} \mathcal{L}(x, \lambda)=\max _{\lambda \geq 0}\left\{f(x)+\sum_{i=1}^{m} \lambda_{i} g_{i}(x)\right\} .
$$

If $g_{i}(x)>0$ for some $i \in[m]$, then we can send λ_{i} to $+\infty$, making $\mathcal{L}(x, \lambda)$ arbitrarily large. On the other hand, if $g_{i}(x) \leq 0$ for all $i \in[m]$, then $\max _{\lambda \geq 0} \mathcal{L}(x, \lambda)$ is attained at $\lambda=0$, in which case, $\max _{\lambda \geq 0} \mathcal{L}(x, \lambda)=f(x)$. This observation implies that

$$
\min _{x} \max _{\lambda \geq 0} \mathcal{L}(x, \lambda)=\min _{x}\left\{f(x): g_{i}(x) \leq 0 \text { for } i=1, \ldots, m\right\} .
$$

Remember that the Lagrangian dual problem is given by

$$
\max _{\lambda \geq 0} q(\lambda)=\max _{\lambda \geq 0} \min _{x} \mathcal{L}(x, \lambda) .
$$

Then the weak duality theorem states that

$$
\min _{x} \max _{\lambda \geq 0} \mathcal{L}(x, \lambda) \geq \max _{\lambda \geq 0} \min _{x} \mathcal{L}(x, \lambda) .
$$

Moreover, if strong duality holds, then the equality holds as follows.

$$
\min _{x} \max _{\lambda \geq 0} \mathcal{L}(x, \lambda)=\max _{\lambda \geq 0} \min _{x} \mathcal{L}(x, \lambda) .
$$

More generally, consider a function $\phi(x, y)$ that is convex in x and concave in y. Then

$$
\begin{equation*}
\min _{x \in X} \max _{y \in Y} \phi(x, y) \tag{19.2}
\end{equation*}
$$

where sets X and Y are convex is called a saddle point problem. Under certain conditions on X and Y, the minimum and maximum can be swapped.

$$
\min _{x \in X} \max _{y \in Y} \phi(x, y)=\max _{y \in Y} \min _{x \in X} \phi(x, y) .
$$

Such a result is called a minimax theorem, and the strong Lagrangian duality theorem is an example.

2.1 Zero-sum game

Suppose that we have two adversarial players. Player 1 chooses from d actions $i \in[d]$ while player 2 chooses from m actions $j \in[m]$. If player 1 chooses $i \in[d]$ and player 2 chooses $j \in[m]$, then player 1 loses $a_{i j}$ while player gains $a_{i j}$. This is called a zero-sum game.
Both players can randomize their strategies, meaning that player 1 chooses $x \in \Delta_{d}=\left\{x \in[0,1]^{d}\right.$: $\left.1^{\top} x=1\right\}$ and player 2 chooses $y \in \Delta_{m}=\left\{y \in[0,1]^{m}: 1^{\top} y=1\right\}$. Then $x^{\top} A y$ is the expected loss for player 1 and also the expected gain for player 2 .

Suppose that player 1 knows player 2's strategy, given by a vector $y \in \Delta_{m}$. Then player 1 will choose a strategy $x \in \Delta_{d}$ so that the expected loss can be minimized and incurs a loss of

$$
\min _{x \in \Delta_{d}} x^{\top} A y .
$$

Given that player 2 knows player 1 will do this for any y, player 2 should choose y to maximize the expected gain so that player 2 obtains a gain of

$$
\max _{y \in \Delta_{m}} \min _{x \in \Delta_{d}} x^{\top} A y
$$

In fact, von Neumann's minimax theorem states that it does not matter who moves first, because

$$
\max _{y \in \Delta_{m}} \min _{x \in \Delta_{d}} x^{\top} A y=\min _{x \in \Delta_{d}} \max _{y \in \Delta_{m}} x^{\top} A y .
$$

2.2 Saddle point optimality

In general, we have the following relationship.
Theorem 19.1. Consider the saddle point problem (19.2). Then the following statement holds.

$$
\min _{x \in X} \max _{y \in Y} \phi(x, y) \geq \max _{y \in Y} \min _{x \in X} \phi(x, y) .
$$

Proof. Note that for any $(x, y) \in X \times Y$, we have $\phi(x, y) \geq \min _{x \in X} \phi(x, y)$. Taking the maximum of each side over $y \in Y$, we obtain $\max _{y \in Y} \phi(x, y) \geq \max _{y \in Y} \min _{x \in X} \phi(x, y)$. As this inequality holds for every $x \in X$, taking the minimum of the left-hand side over $x \in X$ preserves the inequality. If done so, we deduce that $\min _{x \in X} \max _{y \in Y} \phi(x, y) \geq \max _{y \in Y} \min _{x \in X} \phi(x, y)$, as required.

We say that a solution $\left(x^{*}, y^{*}\right) \in X \times Y$ is a saddle point to the problem $\min _{x \in X} \max _{y \in Y} \phi(x, y)$ if

$$
\phi\left(x^{*}, y\right) \leq \phi\left(x^{*}, y^{*}\right) \leq \phi\left(x, y^{*}\right)
$$

for all $(x, y) \in X \times Y$. If $\left(x^{*}, y^{*}\right)$ is a saddle point, then

$$
\phi\left(x^{*}, y^{*}\right)=\max _{y \in Y} \phi\left(x^{*}, y\right)=\min _{x \in X} \phi\left(x, y^{*}\right) .
$$

Theorem 19.2. If $\left(x^{*}, y^{*}\right)$ is a saddle point, then

$$
\min _{x \in X} \max _{y \in Y} \phi(x, y)=\phi\left(x^{*}, y^{*}\right)=\max _{y \in Y} \min _{x \in X} \phi(x, y) .
$$

Proof. By definition, we obtain

$$
\max _{y \in Y} \phi\left(x^{*}, y\right) \leq \phi\left(x^{*}, y^{*}\right) \leq \min _{x \in X} \phi\left(x, y^{*}\right)
$$

Moreover, this implies that

$$
\min _{x \in X} \max _{y \in Y} \phi\left(x^{*}, y\right) \leq \phi\left(x^{*}, y^{*}\right) \leq \max _{x \in X} \min _{x \in X} \phi\left(x, y^{*}\right)
$$

By Theorem 19.1, it follows that the inequalities must hold with equality.
A saddle point problem combines two convex optimization problems into one.

$$
\begin{aligned}
\text { Primal }: & \min _{x \in X}\left\{\bar{\phi}(x):=\max _{y \in Y} \phi(x, y)\right\} \\
\text { Dual }: & \max _{y \in Y}\left\{\phi(y):=\min _{x \in X} \phi(x, y)\right\} .
\end{aligned}
$$

For any $(\bar{x}, \bar{y}) \in X \times Y$, Theorem 19.1 implies that

$$
\bar{\phi}(\bar{x})=\max _{y \in Y} \phi(\bar{x}, y) \geq \min _{x \in X} \phi(x, \bar{y})=\underline{\phi}(\bar{y})
$$

We say that a point $(\bar{x}, \bar{y}) \in X \times Y$ is an ϵ-saddle point if

$$
0 \leq \bar{\phi}(\bar{x})-\underline{\phi}(\bar{y})=\max _{y \in Y} \phi(\bar{x}, y)-\min _{x \in X} \phi(x, \bar{y}) \leq \epsilon
$$

Note that if $(\bar{x}, \bar{y}) \in X \times Y$ is an ϵ-saddle point, then

$$
\begin{aligned}
& \bar{\phi}(\bar{x})-\min _{x \in X} \bar{\phi}(x) \leq \epsilon, \\
& \max _{y \in Y} \underline{\phi}(y)-\underline{\phi}(\bar{y}) \leq \epsilon
\end{aligned}
$$

2.3 Primal-dual algorithm for saddle point problems

Let us consider an algorithm for solving the saddle point problem, whose pseudo-code is given as in Algorithm 1. The algorithm is called the primal-dual subgradient method. Note that at each

```
Algorithm 1 Primal-dual subgradient method
    Initialize \(x_{1} \in X\) and \(y_{1} \in Y\).
    for \(t=1, \ldots, T-1\) do
        Obtain \(g_{x, t} \in \partial_{x} \phi\left(x_{t}, y_{t}\right)\) and \(g_{y, t} \in \partial_{y} \phi\left(x_{t}, y_{t}\right)\).
        Update \(x_{t+1}=\operatorname{proj}_{X}\left(x_{t}-\eta_{t} g_{x, t}\right)\) and \(y_{t+1}=\operatorname{proj}_{Y}\left(y_{t}+\eta_{t} g_{y, t}\right)\) for some step size \(\eta_{t}>0\).
    end for
    Return \(x_{T+1}\).
```

iteration, we simultaneously update both the primal variables x and the dual variables y. We assumed that $\phi(x, y)$ is convex in x and concave in $y . \partial_{x} \phi(x, y)$ is the subdifferential of $\phi(x, y)$ for a fixed y, and $\partial_{y} \phi(x, y)$ is the superdifferential of $\phi(x, y)$ for a fixed x. The following lemma is analogous to the subgradient inequality for convex functions.

Using this lemma, we can show that

Theorem 19.3. Let \bar{x}_{T} and \bar{y}_{T} be defined as

$$
\bar{x}_{T}=\left(\sum_{t=1}^{T} \eta_{t}\right)^{-1} \sum_{t=1}^{T} \eta_{t} x_{t}, \quad \bar{y}_{T}=\left(\sum_{t=1}^{T} \eta_{t}\right)^{-1} \sum_{t=1}^{T} \eta_{t} y_{t} .
$$

Then for any $(x, y) \in X \times Y$,

$$
\phi\left(\bar{x}_{T}, y\right)-\phi\left(x, \bar{y}_{T}\right) \leq \frac{1}{2 \sum_{t=1}^{T} \eta_{t}}\left(\left\|\left(x_{1}, y_{1}\right)-(x, y)\right\|_{2}^{2}+\sum_{t=1}^{T} \eta_{t}^{2}\left\|\left(g_{x, t}, g_{y, t}\right)\right\|_{2}^{2}\right) .
$$

Assuming that $\left\|\left(g_{x}, g_{y}\right)\right\|_{2}^{2} \leq L^{2}$ for any $g_{x} \in \partial_{x} \phi(x, y)$ and $g_{y} \in \partial_{y} \phi(x, y)$ and that $\|\left(x_{1}, y_{1}\right)-$ $(x, y) \|_{2}^{2} \leq R^{2}$, we can set $\eta_{t}=R /(L \sqrt{T})$. Then for any $(x, y) \in X \times Y$,

$$
\phi\left(\bar{x}_{T}, y\right)-\phi\left(x, \bar{y}_{T}\right) \leq \frac{L R}{\sqrt{T}} .
$$

In particular,

$$
\max _{y \in Y} \phi\left(\bar{x}_{T}, y\right)-\min _{x \in X} \phi\left(x, \bar{y}_{T}\right) \leq \frac{L R}{\sqrt{T}} .
$$

Then setting $T=O\left(1 / \epsilon^{2}\right)$, we know that $\left(\bar{x}_{T}, \bar{y}_{T}\right)$ is an ϵ-saddle point.

3 Fenchel duality

The Fenchel conjugate of a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is given by

$$
f^{*}(y)=\sup _{x \in \operatorname{dom}(f)}\left\{y^{\top} x-f(x)\right\} .
$$

As $y^{\top} x-f(x)$ is linear in y, the conjugate function is always convex, regardless of f.
Lemma 19.4 (Fenchel-Young inequality). For $x \in \operatorname{dom}(f)$ and $y \in \operatorname{dom}\left(f^{*}\right)$,

$$
f(x)+f^{*}(y) \geq y^{\top} x
$$

Proof. Note that $f^{*}(y)=\sup _{x \in \operatorname{dom}(f)}\left(y^{\top} x-f(x)\right) \geq y^{\top} x-f(x)$.
We discussed Lagrangian duality, and in fact, we can derive the Lagrangian dual function based on the conjugate function. Consider

$$
\begin{align*}
\operatorname{minimize} & f(x) \\
\text { subject to } & A x=b \tag{19.3}\\
& C x \leq d
\end{align*}
$$

Then the associated Lagrangian dual function is given by

$$
\begin{aligned}
q(\lambda, \mu) & =\min _{x}\left\{f(x)+\lambda^{\top}(C x-d)+\mu^{\top}(A x-b)\right\} \\
& =-d^{\top} \lambda-b^{\top} \mu+\min _{x}\left\{f(x)+\left(C^{\top} \lambda+A^{\top} \mu\right)^{\top} x\right\} \\
& =-d^{\top} \lambda-b^{\top} \mu-\sup _{x}\left\{-f(x)-\left(C^{\top} \lambda+A^{\top} \mu\right)^{\top} x\right\} \\
& =-d^{\top} \lambda-b^{\top} \mu-f^{*}\left(-C^{\top} \lambda-A^{\top} \mu\right) .
\end{aligned}
$$

Note that the domain of $q(\lambda, \mu)$ is

$$
\operatorname{dom}(q)=\left\{(\lambda, \mu):-C^{\top} \lambda-A^{\top} \mu \in \operatorname{dom}\left(f^{*}\right)\right\} .
$$

Then the Lagrangian dual problem is given by

$$
\begin{align*}
\operatorname{maximize} & -d^{\top} \lambda-b^{\top} \mu-f^{*}\left(-C^{\top} \lambda-A^{\top} \mu\right) \\
\text { subject to } & \lambda \geq 0 \tag{19.4}\\
& -C^{\top} \lambda-A^{\top} \mu \in \operatorname{dom}\left(f^{*}\right) .
\end{align*}
$$

In particular, when there is no inequality constraint, the associated Lagrangian dual function is given by

$$
q(\mu)=-b^{\top} \mu-f^{*}\left(-A^{\top} \mu\right),
$$

and the Lagrangian dual problem is given by

$$
\begin{align*}
\operatorname{maximize} & -b^{\top} \mu-f^{*}\left(-A^{\top} \mu\right) \\
\text { subject to } & -A^{\top} \mu \in \operatorname{dom}\left(f^{*}\right) . \tag{19.5}
\end{align*}
$$

3.1 Fenchel conjugate examples

Example 19.5. When $f(x)=c^{\top} x+d$ over $x \in \mathbb{R}^{d}$,

$$
f^{*}(y)=\sup _{x \in \mathbb{R}^{d}}\left(y^{\top} x-c^{\top} x-d\right)= \begin{cases}-d, & \text { if } y=c \\ +\infty, & \text { otherwise }\end{cases}
$$

Example 19.6. When $f(x)=\log \left(1+e^{x}\right)$ over $x \in \mathbb{R}$,

$$
f^{*}(y)=\sup _{x \in \mathbb{R}}\left(y x-\log \left(1+e^{x}\right)\right)= \begin{cases}y \log y+(1-y) \log (1-y), & \text { if } 0<y<1 \\ 0, & \text { if } y \in\{0,1\} \\ +\infty, & \text { otherwise }\end{cases}
$$

Example 19.7. When $f(x)=(1 / 2) x^{\top} Q x+p^{\top} x$ over $x \in \mathbb{R}^{d}$ for some positive definite Q,

$$
f^{*}(y)=\sup _{x \in \mathbb{R}}\left(y^{\top} x-\frac{1}{2} x^{\top} Q x-p^{\top} x\right) .
$$

Note that the maximum is attained at $x=Q^{-1}(y-p)$. Therefore,

$$
f^{*}(y)=\frac{1}{2}(y-p)^{\top} Q^{-1}(y-p)
$$

Here,

$$
\nabla f^{*}(y)=Q^{-1}(y-p)
$$

which implies that $\nabla f\left(\nabla f^{*}(y)\right)=y$ and

$$
\nabla f^{*}(y)=(\nabla f)^{-1}(y) .
$$

Example 19.8. When $f(x)=\sum_{i=1}^{d} x_{i} \log x_{i}$ over $x \in \mathbb{R}_{++}^{d}$,

$$
f^{*}(y)=\sup _{x \in \mathbb{R}_{++}^{d}}\left(y^{\top} x-\sum_{i=1}^{d} x_{i} \log x_{i}\right)=\sup _{x \in \mathbb{R}_{++}^{d}}\left(\sum_{i=1}^{d} x_{i}\left(y_{i}-\log x_{i}\right)\right)=\sum_{i=1}^{d} e^{y_{i}-1} .
$$

Example 19.9. When $f(X)=-\log \operatorname{det} X$ over $X \in \mathbb{S}_{++}^{d}$,

$$
f^{*}(Y)=\sup _{X \in \mathbb{S}_{++}^{d}}\left(\operatorname{tr}\left(Y^{\top} X\right)+\log \operatorname{det} X\right) .
$$

It is known that $\nabla \log \operatorname{det} X=X^{-1}$. Then the supremum is attained at $X=-Y^{-1}$, and therefore,

$$
f^{*}(Y)=-d-\log \operatorname{det}(-Y) .
$$

