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1 Outline

In this lecture, we study

• Saddle point problem,

• Fenchel duality.

2 Saddle point problem

Consider the following inequality constrained problem.

minimize f(x)

subject to gi(x) ≤ 0 for i = 1, . . . ,m.
(19.1)

Note that

max
λ≥0

L(x, λ) = max
λ≥0

{
f(x) +

m∑
i=1

λigi(x)

}
.

If gi(x) > 0 for some i ∈ [m], then we can send λi to +∞, making L(x, λ) arbitrarily large. On the
other hand, if gi(x) ≤ 0 for all i ∈ [m], then maxλ≥0 L(x, λ) is attained at λ = 0, in which case,
maxλ≥0 L(x, λ) = f(x). This observation implies that

min
x

max
λ≥0

L(x, λ) = min
x

{f(x) : gi(x) ≤ 0 for i = 1, . . . ,m} .

Remember that the Lagrangian dual problem is given by

max
λ≥0

q(λ) = max
λ≥0

min
x

L(x, λ).

Then the weak duality theorem states that

min
x

max
λ≥0

L(x, λ) ≥ max
λ≥0

min
x

L(x, λ).

Moreover, if strong duality holds, then the equality holds as follows.

min
x

max
λ≥0

L(x, λ) = max
λ≥0

min
x

L(x, λ).

More generally, consider a function ϕ(x, y) that is convex in x and concave in y. Then

min
x∈X

max
y∈Y

ϕ(x, y) (19.2)

where sets X and Y are convex is called a saddle point problem. Under certain conditions on X
and Y , the minimum and maximum can be swapped.

min
x∈X

max
y∈Y

ϕ(x, y) = max
y∈Y

min
x∈X

ϕ(x, y).

Such a result is called a minimax theorem, and the strong Lagrangian duality theorem is an example.
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2.1 Zero-sum game

Suppose that we have two adversarial players. Player 1 chooses from d actions i ∈ [d] while player
2 chooses from m actions j ∈ [m]. If player 1 chooses i ∈ [d] and player 2 chooses j ∈ [m], then
player 1 loses aij while player gains aij . This is called a zero-sum game.

Both players can randomize their strategies, meaning that player 1 chooses x ∈ ∆d = {x ∈ [0, 1]d :
1⊤x = 1} and player 2 chooses y ∈ ∆m = {y ∈ [0, 1]m : 1⊤y = 1}. Then x⊤Ay is the expected loss
for player 1 and also the expected gain for player 2.

Suppose that player 1 knows player 2’s strategy, given by a vector y ∈ ∆m. Then player 1 will
choose a strategy x ∈ ∆d so that the expected loss can be minimized and incurs a loss of

min
x∈∆d

x⊤Ay.

Given that player 2 knows player 1 will do this for any y, player 2 should choose y to maximize the
expected gain so that player 2 obtains a gain of

max
y∈∆m

min
x∈∆d

x⊤Ay.

In fact, von Neumann’s minimax theorem states that it does not matter who moves first, because

max
y∈∆m

min
x∈∆d

x⊤Ay = min
x∈∆d

max
y∈∆m

x⊤Ay.

2.2 Saddle point optimality

In general, we have the following relationship.

Theorem 19.1. Consider the saddle point problem (19.2). Then the following statement holds.

min
x∈X

max
y∈Y

ϕ(x, y) ≥ max
y∈Y

min
x∈X

ϕ(x, y).

Proof. Note that for any (x, y) ∈ X×Y , we have ϕ(x, y) ≥ minx∈X ϕ(x, y). Taking the maximum of
each side over y ∈ Y , we obtain maxy∈Y ϕ(x, y) ≥ maxy∈Y minx∈X ϕ(x, y). As this inequality holds
for every x ∈ X, taking the minimum of the left-hand side over x ∈ X preserves the inequality. If
done so, we deduce that minx∈X maxy∈Y ϕ(x, y) ≥ maxy∈Y minx∈X ϕ(x, y), as required.

We say that a solution (x∗, y∗) ∈ X × Y is a saddle point to the problem minx∈X maxy∈Y ϕ(x, y) if

ϕ(x∗, y) ≤ ϕ(x∗, y∗) ≤ ϕ(x, y∗)

for all (x, y) ∈ X × Y . If (x∗, y∗) is a saddle point, then

ϕ(x∗, y∗) = max
y∈Y

ϕ(x∗, y) = min
x∈X

ϕ(x, y∗).

Theorem 19.2. If (x∗, y∗) is a saddle point, then

min
x∈X

max
y∈Y

ϕ(x, y) = ϕ(x∗, y∗) = max
y∈Y

min
x∈X

ϕ(x, y).
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Proof. By definition, we obtain

max
y∈Y

ϕ(x∗, y) ≤ ϕ(x∗, y∗) ≤ min
x∈X

ϕ(x, y∗).

Moreover, this implies that

min
x∈X

max
y∈Y

ϕ(x∗, y) ≤ ϕ(x∗, y∗) ≤ max
x∈X

min
x∈X

ϕ(x, y∗).

By Theorem 19.1, it follows that the inequalities must hold with equality.

A saddle point problem combines two convex optimization problems into one.

Primal : min
x∈X

{
ϕ(x) := max

y∈Y
ϕ(x, y)

}
Dual : max

y∈Y

{
ϕ(y) := min

x∈X
ϕ(x, y)

}
.

For any (x̄, ȳ) ∈ X × Y , Theorem 19.1 implies that

ϕ(x̄) = max
y∈Y

ϕ(x̄, y) ≥ min
x∈X

ϕ(x, ȳ) = ϕ(ȳ).

We say that a point (x̄, ȳ) ∈ X × Y is an ϵ-saddle point if

0 ≤ ϕ(x̄)− ϕ(ȳ) = max
y∈Y

ϕ(x̄, y)−min
x∈X

ϕ(x, ȳ) ≤ ϵ.

Note that if (x̄, ȳ) ∈ X × Y is an ϵ-saddle point, then

ϕ(x̄)−min
x∈X

ϕ(x) ≤ ϵ,

max
y∈Y

ϕ(y)− ϕ(ȳ) ≤ ϵ.

2.3 Primal-dual algorithm for saddle point problems

Let us consider an algorithm for solving the saddle point problem, whose pseudo-code is given as
in Algorithm 1. The algorithm is called the primal-dual subgradient method. Note that at each

Algorithm 1 Primal-dual subgradient method

Initialize x1 ∈ X and y1 ∈ Y .
for t = 1, . . . , T − 1 do

Obtain gx,t ∈ ∂xϕ(xt, yt) and gy,t ∈ ∂yϕ(xt, yt).
Update xt+1 = projX(xt − ηtgx,t) and yt+1 = projY (yt + ηtgy,t) for some step size ηt > 0.

end for
Return xT+1.

iteration, we simultaneously update both the primal variables x and the dual variables y. We
assumed that ϕ(x, y) is convex in x and concave in y. ∂xϕ(x, y) is the subdifferential of ϕ(x, y) for
a fixed y, and ∂yϕ(x, y) is the superdifferential of ϕ(x, y) for a fixed x. The following lemma is
analogous to the subgradient inequality for convex functions.

Using this lemma, we can show that
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Theorem 19.3. Let x̄T and ȳT be defined as

x̄T =

(
T∑
t=1

ηt

)−1 T∑
t=1

ηtxt, ȳT =

(
T∑
t=1

ηt

)−1 T∑
t=1

ηtyt.

Then for any (x, y) ∈ X × Y ,

ϕ(x̄T , y)− ϕ(x, ȳT ) ≤
1

2
∑T

t=1 ηt

(
∥(x1, y1)− (x, y)∥22 +

T∑
t=1

η2t ∥(gx,t, gy,t)∥22

)
.

Assuming that ∥(gx, gy)∥22 ≤ L2 for any gx ∈ ∂xϕ(x, y) and gy ∈ ∂yϕ(x, y) and that ∥(x1, y1) −
(x, y)∥22 ≤ R2, we can set ηt = R/(L

√
T ). Then for any (x, y) ∈ X × Y ,

ϕ(x̄T , y)− ϕ(x, ȳT ) ≤
LR√
T
.

In particular,

max
y∈Y

ϕ(x̄T , y)−min
x∈X

ϕ(x, ȳT ) ≤
LR√
T
.

Then setting T = O(1/ϵ2), we know that (x̄T , ȳT ) is an ϵ-saddle point.

3 Fenchel duality

The Fenchel conjugate of a function f : Rd → R is given by

f∗(y) = sup
x∈dom(f)

{
y⊤x− f(x)

}
.

As y⊤x− f(x) is linear in y, the conjugate function is always convex, regardless of f .

Lemma 19.4 (Fenchel-Young inequality). For x ∈ dom(f) and y ∈ dom(f∗),

f(x) + f∗(y) ≥ y⊤x.

Proof. Note that f∗(y) = supx∈dom(f)(y
⊤x− f(x)) ≥ y⊤x− f(x).

We discussed Lagrangian duality, and in fact, we can derive the Lagrangian dual function based on
the conjugate function. Consider

minimize f(x)

subject to Ax = b

Cx ≤ d.

(19.3)

Then the associated Lagrangian dual function is given by

q(λ, µ) = min
x

{
f(x) + λ⊤(Cx− d) + µ⊤(Ax− b)

}
= −d⊤λ− b⊤µ+min

x

{
f(x) + (C⊤λ+A⊤µ)⊤x

}
= −d⊤λ− b⊤µ− sup

x

{
−f(x)− (C⊤λ+A⊤µ)⊤x

}
= −d⊤λ− b⊤µ− f∗(−C⊤λ−A⊤µ).
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Note that the domain of q(λ, µ) is

dom(q) =
{
(λ, µ) : −C⊤λ−A⊤µ ∈ dom(f∗)

}
.

Then the Lagrangian dual problem is given by

maximize − d⊤λ− b⊤µ− f∗(−C⊤λ−A⊤µ)

subject to λ ≥ 0

− C⊤λ−A⊤µ ∈ dom(f∗).

(19.4)

In particular, when there is no inequality constraint, the associated Lagrangian dual function is
given by

q(µ) = −b⊤µ− f∗(−A⊤µ),

and the Lagrangian dual problem is given by

maximize − b⊤µ− f∗(−A⊤µ)

subject to −A⊤µ ∈ dom(f∗).
(19.5)

3.1 Fenchel conjugate examples

Example 19.5. When f(x) = c⊤x+ d over x ∈ Rd,

f∗(y) = sup
x∈Rd

(y⊤x− c⊤x− d) =

{
−d, if y = c,

+∞, otherwise.

Example 19.6. When f(x) = log(1 + ex) over x ∈ R,

f∗(y) = sup
x∈R

(yx− log(1 + ex)) =


y log y + (1− y) log(1− y), if 0 < y < 1,

0, if y ∈ {0, 1},
+∞, otherwise.

Example 19.7. When f(x) = (1/2)x⊤Qx+ p⊤x over x ∈ Rd for some positive definite Q,

f∗(y) = sup
x∈R

(
y⊤x− 1

2
x⊤Qx− p⊤x

)
.

Note that the maximum is attained at x = Q−1(y − p). Therefore,

f∗(y) =
1

2
(y − p)⊤Q−1(y − p).

Here,
∇f∗(y) = Q−1(y − p),

which implies that ∇f(∇f∗(y)) = y and

∇f∗(y) = (∇f)−1(y).
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Example 19.8. When f(x) =
∑d

i=1 xi log xi over x ∈ Rd
++,

f∗(y) = sup
x∈Rd

++

(
y⊤x−

d∑
i=1

xi log xi

)
= sup

x∈Rd
++

(
d∑

i=1

xi(yi − log xi)

)
=

d∑
i=1

eyi−1.

Example 19.9. When f(X) = − log detX over X ∈ Sd++,

f∗(Y ) = sup
X∈Sd++

(
tr(Y ⊤X) + log detX

)
.

It is known that ∇ log detX = X−1. Then the supremum is attained at X = −Y −1, and therefore,

f∗(Y ) = −d− log det(−Y ).
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