1 Outline

In this lecture, we study

- KKT conditions,
- Lagrangian duality.

2 Karush-Kuhn-Tucker conditions

Remember that x^* is an optimal solution to

$$\min_{x \in C} \quad f(x)$$

where C is a convex set and f is differentiable if and only if

$$\nabla f(x^*)^\top (x - x^*) \ge 0 \quad \forall x \in C.$$

However, the structure of C may be arbitrary, which makes the condition difficult to verify. In this section, we present another way of verifying optimality. Namely, Karu-Kuhn-Tucker conditions, often referred to as KKT conditions.

2.1 Linear constraints

We consider problems of the following structure.

minimize
$$f(x)$$

subject to $Ax \le b$ (18.1)
 $Cx = d$

where

- $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^m$,
- $C \in \mathbb{R}^{\ell \times d}$ and $d \in \mathbb{R}^{\ell}$.

Theorem 18.1 (KKT conditions for linearly constrained problems). The linearly constrained problem as in (18.1) satisfies the following.

1. (Necessity) If x^* is a feasible solution to (18.1) and $f(x^*)$ is a local minimum, then there exist $\lambda^* \in \mathbb{R}^m_+$ and $\mu^* \in \mathbb{R}^\ell$ such that

$$\nabla f(x^*)^{\top} + \lambda^{*\top} A + \mu^{*\top} C = 0 \quad \& \quad \lambda^{*\top} (Ax - b) = 0.$$
 (*)

2. (Sufficiency) If f is convex, x^* is a feasible solution to (18.1), and there exist $\lambda^* \in \mathbb{R}^m_+$ and $\mu^* \in \mathbb{R}^\ell$ satisfying (\star) , then x^* is an optimal solution to (18.1).

2.2 General convex constraints

We consider problems of the following structure.

minimize
$$f(x)$$

subject to $g_i(x) \le 0$ for $i = 1, ..., m$ (18.2)
 $h_i(x) = 0$ for $j = 1, ..., \ell$

where

- f is convex,
- g_1, \ldots, g_m are convex,
- h_1, \ldots, h_ℓ are affine.

Definition 18.2 (Slater's condition). Suppose that g_1, \ldots, g_k are affine and g_{k+1}, \ldots, g_m are convex functions that are not affine. Then we say that the problem (18.2) satisfies Slater's condition if there exists a solution \bar{x} such that

$$g_i(\bar{x}) \leq 0$$
 for $i = 1, \dots, k$, $g_i(\bar{x}) < 0$ for $i = k + 1, \dots, m$, $h_j(\bar{x}) = 0$ for $j = 1, \dots, \ell$.

Theorem 18.3 (KKT conditions for convex constrained problems). The convex programming problem as in (18.2) satisfies the following.

1. (Necessity) Assume that Slater's condition is satisfied. If x^* is a feasible optimal solution to (18.2), then there exist $\lambda^* \in \mathbb{R}^m_+$ and $\mu^* \in \mathbb{R}^\ell$ such that

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla g_i(x^*) + \sum_{j=1}^\ell \mu_j^* \nabla h_j(x^*) = 0 \quad \& \quad \lambda_i^* g_i(x^*) = 0 \text{ for all } i = 1, \dots, m. \quad (\star\star)$$

2. (Sufficiency) If x^* is a feasible solution to (18.2) and there exist $\lambda^* \in \mathbb{R}^m_+$ and $\mu^* \in \mathbb{R}^\ell$ satisfying $(\star\star)$, then x^* is an optimal solution to (18.2).

3 Lagrangian duality

We again consider the following optimization problem

minimize
$$f(x)$$

subject to $g_i(x) \le 0$ for $i = 1, ..., m$
 $h_j(x) = 0$ for $j = 1, ..., \ell$.
(18.3)

We consider the most general setting for which we do not impose the condition that the objective and constraint functions are convex.

3.1 Lagrangian dual problem

The Lagrangian function of (18.3) is given by

$$\mathcal{L}(x,\lambda,\mu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{\ell} \mu_j h_j(x).$$

When the objective function f is convex, constraint functions g_1, \ldots, g_m are convex, constraint functions h_1, \ldots, h_ℓ are affine, and the multiplier $\lambda \ge 0$, the Lagrangian function is convex in x for any fixed λ and μ . Moreover, the Lagrangian function is affine in λ and μ for any fixed x.

The Lagrangian dual function of (18.3) is

$$q(\lambda,\mu) = \inf_{x} \mathcal{L}(x,\lambda,\mu) = \inf_{x} \left\{ f(x) + \sum_{i=1}^{m} \lambda_{i} g_{i}(x) + \sum_{j=1}^{\ell} \mu_{j} h_{j}(x) \right\}.$$

Notice that the Lagrangian dual function is concave in (λ, μ) , regardles of f, g_1, \ldots, g_m , and h_1, \ldots, h_ℓ . This is because $\mathcal{L}(x, \lambda, \mu)$ is affine in λ and μ for any fixed x, and $q(\lambda, \mu)$ is a point-wise minimum of affine functions.

Proposition 18.4. Let x be a feasible solution to (18.3), and $\lambda \geq 0$. Then

$$f(x) \ge q(\lambda, \mu).$$

Proof. Since x is feasible, $g_i(x) \leq 0$ for i = 1, ..., m and $h_j(x) = 0$ for $j = 1, ..., \ell$. Then for any $\lambda \geq 0$, we have

$$\sum_{i=1}^m \lambda_i g_i(x) + \sum_{j=1}^\ell \mu_j h_j(x) \le 0.$$

This implies that

$$f(x) \ge \mathcal{L}(x, \lambda, \mu).$$

Note that

$$q(\lambda,\mu) = \inf_{x} \mathcal{L}(x,\lambda,\mu) \le \mathcal{L}(x,\lambda,\mu).$$

Therefore, $f(x) \ge q(\lambda, \mu)$.

By Proposition 18.4, if (18.3) is unbounded below, the Lagrangian dual function $q(\lambda, \mu) = -\infty$ for any $\lambda \ge 0$.

With the Lagrangian dual function, we can provide a lower bound on the problem (18.3). The Lagrangian dual problem is defined as

maximize
$$q(\lambda, \mu)$$

subject to $\lambda \ge 0.$ (18.4)

We often call (18.3) as *primal* and (18.4) as the *associated* (Lagrangian) dual. The following result states that the optimal value of the primal is lower bounded by the optimal value of the dual.

Theorem 18.5 (Weak duality). Consider the problem (18.3) and the associated Lagrangian dual problem (18.4). Then the following statement holds.

$$\min_{x \in C} f(x) \ge \max_{\lambda \ge 0} q(\lambda, \mu)$$

where $C = \{x : g_i(x) \le 0 \text{ for } i = 1, \dots, m, h_j(x) = 0 \text{ for } j = 1, \dots, \ell\}.$

Proof. By proposition 18.4, we know that $f(x) \ge q(\lambda, \mu)$ for any $x \in C$ and $\lambda \ge 0$. Then taking the minimum of f(x) over $x \in C$, it follows that $\min_{x \in C} f(x) \ge q(\lambda, \mu)$. Then taking the maximum of $q(\lambda, \mu)$ over $\lambda \ge 0$, we obtain the desired inequality.

Theorem 18.5 holds regardless of whether the objective and constraint functions are convex or not. In fact, if we further assume that the objective f is convex and the constraint functions satisfy Slater's condition, then the inequality given in Theorem 18.5 holds with equality.

Theorem 18.6 (Strong duality). Consider the primal problem (18.3) and the associated Lagrangian dual problem (18.4). Assume that the objective function f and the constraint functions $g_1, \ldots, g_m, h_1, \ldots, h_\ell$ are convex. If the primal problem (18.3) has a finite optimal value and Slater's condition, given in Definition 18.2, is satisfied, then there exist $\lambda^* \geq 0$ and μ^* such that

$$\min_{x \in C} f(x) = q(\lambda^*, \mu^*) = \max_{\lambda \ge 0} q(\lambda, \mu)$$

where $C = \{x : g_i(x) \le 0 \text{ for } i = 1, \dots, m, h_j(x) = 0 \text{ for } j = 1, \dots, \ell\}.$

3.2 Examples

Consider the following linear program in standard form.

minimize
$$c^{\top}x$$

subject to $Ax = b$, (18.5)
 $x \ge 0$.

Then the Lagrangian dual function is given by

$$q(\lambda, \mu) = \inf_{x} \mathcal{L}(x, \lambda, \mu)$$

= $\inf_{x} \left\{ c^{\top}x - \lambda^{\top}x + \mu^{\top}(Ax - b) \right\}$
= $-b^{\top}\mu + \inf_{x} \left\{ (c - \lambda + A^{\top}\mu)^{\top}x \right\}.$

Note that $\inf_x \{(c - \lambda + A^{\top}\mu)^{\top}x\} = -\infty$ unless $c - \lambda + A^{\top}\mu = 0$. Hence, to maximize the Lagrangian dual function $q(\lambda, \mu)$, it is sufficient to consider (λ, μ) satisfying $c - \lambda + A^{\top}\mu = 0$. Therefore, the associated Lagrangian dual problem is equivalent to

maximize
$$-b^{\top}\mu$$

subject to $c - \lambda + A^{\top}\mu = 0,$ (18.6)
 $\lambda \ge 0.$

In fact, we can eliminate the variable from the constraints $c + A^{\top} \mu \ge \lambda$ and $\lambda \ge 0$, and they can be equivalently written as $c + A^{\top} \mu \ge 0$. Moreover, the variables μ are unrestricted, so we can replace μ by $-\mu$. Then (18.6) is equivalent to

maximize
$$b^{\top}\mu$$

subject to $A^{\top}\mu \le c$, (18.7)

which is the dual linear program for (18.5).

Next we consider the following quadratic program.

minimize
$$\frac{1}{2}x^{\top}Qx + p^{\top}x$$

subject to $Ax = b$ (18.8)

where Q is positive definite and thus is invertible. The corresponding Lagrangian function is given by

$$\mathcal{L}(x,\mu) = \frac{1}{2}x^{\top}Qx + p^{\top}x + \mu^{\top}(Ax - b)$$
$$= -b^{\top}\mu + \left(\frac{1}{2}x^{\top}Qx + (p + A^{\top}\mu)^{\top}x\right).$$

Then

$$\nabla_x \mathcal{L}(x,\mu) = Qx + (p + A^\top \mu),$$

and therefore, $\nabla_x \mathcal{L}(x,\mu) = 0$ if and only if $x = -Q^{-1}(p + A^{\top}\mu)$. This in turn implies that the Lagrangian dual function is given by

$$\begin{aligned} q(\mu) &= \inf_{x} \mathcal{L}(x,\mu) \\ &= \mathcal{L}\left(-Q^{-1}(p+A^{\top}\mu),\mu\right) \\ &= -b^{\top}\mu - \frac{1}{2}(p+A^{\top}\mu)^{\top}Q^{-1}(p+A^{\top}\mu) \\ &= -\frac{1}{2}\mu^{\top}AQ^{-1}A^{\top}\mu - (b+AQ^{-1}p)^{\top}\mu - \frac{1}{2}p^{\top}p. \end{aligned}$$

Hence, the Lagrangian dual problem is

$$\max_{\mu} \left\{ -\frac{1}{2} \mu^{\top} A Q^{-1} A^{\top} \mu - (b + A Q^{-1} p)^{\top} \mu \right\}.$$

3.3 Lagrangian dual for conic programming

Consider the following conic programming problem

minimize
$$f(x)$$

subject to $g_i(x) \leq_{K_i} 0$ for $i = 1, ..., m$ (18.9)
 $h_j(x) = 0$ for $j = 1, ..., \ell$

where K_1, \ldots, K_m are proper cones. Remember that $g_i(x) \leq_{K_i} 0$ means $-g_i(x) \in K_i$. Moreover, recall that the dual cone of a cone K is given by

$$K^* = \{ y : y^\top x \ge 0 \ \forall x \in K \}.$$

As we picked a nonnegative multiplier $\lambda \ge 0$ to define the Lagrangian function, we pick a multiplier λ from the dual cone K^* . The Lagrangian function of (18.9) is given by

$$\mathcal{L}(x,\lambda,\mu) = f(x) + \sum_{i=1}^{m} \lambda_i^\top g_i(x) + \sum_{j=1}^{\ell} \mu_j h_j(x)$$

where $\lambda_i \in K_i^*$ is now a vector from the dual cone of K_i for each *i*. Then the Lagrangian dual function is similarly defined as $q(\lambda, \mu) = \inf_x \mathcal{L}(x, \lambda, \mu)$. The Lagrangian dual problem is given by

maximize
$$q(\lambda, \mu)$$

subject to $\lambda_i \ge_{K_i^*} 0$ for $i = 1, \dots, m$. (18.10)

As an example, we consider the following semidefinite program.

minimize
$$c^{\top} x$$

subject to $\sum_{i=1}^{d} x_i A_i \ge_{S^m_+} B$ (18.11)

where S^m_+ denotes the PSD cone containing all $m \times m$ PSD matrices. We learned that the PSD cone is self-dual, so the dual of S^m_+ is itself. Let $Y \in S^m_+$, and consider the associated Lagrangian dual function.

$$q(Y) = \inf_{x} \mathcal{L}(x, Y) = \inf_{x} \left\{ c^{\top} x - \sum_{i=1}^{d} x_i \operatorname{tr}(Y^{\top} A_i) + \operatorname{tr}(Y^{\top} B) \right\}.$$

Note that the Lagrangian dual function q(Y) has a finite value if and only if $c_i = tr(Y^{\top}A_i)$ for every $i \in [d]$. Then the Lagrangian dual problem is given by

maximize
$$\operatorname{tr}(Y^{\top}B)$$

subject to $\operatorname{tr}(Y^{\top}A_i) = c_i$ for $i = 1, \dots, d.$ (18.12)
 $Y \in S^m_+$