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1 Outline

In this lecture, we study

• Variance-reduced (VR) stochastic methods,

• Proximal gradient descent.

2 Variance-reduced (VR) stochastic methods

Although the mini-batch SGD works with a reduced variance, it still cannot exploit the self-tuning
property of smooth functions. In this section, we present another variant of SGD that achieves
both variance reduction and improvement for smooth functions.

We focus on the following set up. We consider

minimizex∈Rd f(x) =
1

n

n∑
i=1

fi(x)

which is called the finite-sum problem. In stochastic optimization, we had the objective of

E [f(x, ξ)] .

Sampling n random vectors ξ1, . . . , ξn, we obtain n sampled functions f(x, ξ1), . . . , f(x, ξn). More-
over,

1

n

n∑
i=1

f(x, ξi)

is an estimator of the original objective function. Taking fi(x) = f(x, ξi), we get the above
optimization problem. Hence, in the context of stochastic optimization, the problem is often called
the empirical risk minimization (ERM) and the sample average approximation (SAA).

When it comes to defining the finite-sum problem for ERM (and SAA), we typically consider convex
loss functions. On the other hand, the finite-sum model is also being used for deep learning, for
which we use non-convex loss functions. Hereinafter, however, we focus on convex functions.

It is widely known that stochastic gradient descent works well for the finite-sum problem. In the
previous section, we learned that taking a mini-batch of stochastic gradients can reduce the variance
term. In fact, there are other ways of reducing the variance, and they are often called variance
reduced (VR) stochastic methods. Among many of these methods, we mention a few below.

• Stochastic average gradient (SAG) [SLRB17].

• SAGA [DBLJ14].

• Stochastic variance reduced gradient (SVRG) [JZ13].
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2.1 Stochastic variance reduced gradient (SVRG)

In particular, we introduce SVRG for this lecture. To elaborate, we select an index r from {1, . . . , n}
uniformly at random. Then for any two points x and y, consider

ĝx = ∇fr(x)− (∇fr(y)−∇f(y)).

By the random choice of r, it follows that

E [ĝx] = E [∇fr(x)]− (E [∇fr(y)]−∇f(y))

= ∇f(x)− (∇f(y)−∇f(y))

= ∇f(x).

In particular, when y = x∗ ∈ argminx∈Rd f(x), we have

ĝx = ∇fr(x)−∇fr(x
∗).

Moreover, we can use

Lemma 16.1. If f1, . . . , fn are convex and β-smooth in the ℓ2 norm, then

Er∼P
[
∥∇fr(x)−∇fr(x

∗)∥22
]
≤ 2β(f(x)− f(x∗))

where P is the uniform distribution over {1, . . . , n} and x∗ ∈ argminx∈Rd f(x).

Proof. Note that

gr(x) = fr(x)−
(
fr(x

∗) +∇fr(x
∗)⊤(x− x∗)

)
≥ 0

because fr is convex. Moreover, fr is β-smooth, and we have

∥∇gr(x)−∇gr(y)∥2 = ∥∇fr(x)−∇fr(x
∗)−∇fr(y) +∇fr(x

∗)∥2 = ∥∇fr(x)−∇fr(y)∥2,

implying in turn that gr is β-smooth. Then it follows that

gr

(
x− 1

β
∇gr(x)

)
≤ gr(x)−

1

2β
∥∇gr(x)∥22.

As gr ≥ 0, we obtain
∥∇gr(x)∥22 ≤ 2βgr(x).

By the definition of gr, this is equivalent to the following.

∥∇fr(x)−∇fr(x)∥2 ≤ 2β
(
fr(x)− fr(x

∗)−∇fr(x
∗)⊤(x− x∗)

)
.

Taking the expection of each side with respect to r,

E [∥∇fr(x)−∇fr(x)∥2] ≤ 2β
(
E [fr(x)]− E [fr(x

∗)]− E
[
∇fr(x

∗)⊤(x− x∗)
])

= 2β
(
f(x)− f(x∗)−∇f(x∗)⊤(x− x∗)

)
= 2β (f(x)− f(x∗)) ,

as required.

Lemma 16.1 basically bounds the variance term E
[
∥ĝx∥22

]
given by ĝx = ∇fr(x)−∇fr(x

∗). Based
on this result, we consider the following algorithm.

In the inner loop, we obtain a stochastic estimator of the gradient, ∇fr(yk), as in each iteration of
SGD. On the other hand, the outer loop requires computing the exact gradient, ∇f(xt).

2



Algorithm 1 Stochastic variance reduced gradient (SVRG) descent

Initialize x1 ∈ C.
for t = 1, . . . , T do

y1 = xt.
for k = 1, . . . , B do

Sample r from {1, . . . , n} uniformly at random.
Update yk+1 = yk − η(∇fr(yk)− (∇fr(xt)−∇f(xt))).

end for
Update xt+1 =

1
B

∑B
k=1 yk.

end for
Return xT+1.

2.2 SVRG analysis

Theorem 16.2. Assume that f1, . . . , fn are β-smooth and f = (1/n)
∑n

i=1 fi is α-strongly convex
with respect to the ℓ2 norm. Setting η = 1/(6β) and B = 36β/α, xT+1 returned by Algorithm 1
satisfies

E [f(xT+1)]− f(x∗) ≤
(
3

4

)T

(f(x1)− f(x∗))

where x∗ ∈ argminx∈Rd f(x).

Proof. Let
gk = ∇fr(yk)−∇fr(xt) +∇f(xt).

Note that

∥yk+1 − x∗∥22 = ∥yk − ηgk − x∗∥22
= ∥yk − x∗∥22 − 2ηg⊤k (yk − x∗) + η2∥gk∥22.

(16.1)

Let us consider the third term η2∥gk∥22 in the right-hand side of (16.1). Note that

E
[
∥gk∥22 | yk

]
= E

[
∥∇fr(yk)−∇fr(xt) +∇f(xt)∥22 | yk

]
= E

[
∥∇fr(yk)−∇fr(x

∗) +∇fr(x
∗)−∇fr(xt) +∇f(xt)∥22 | yk

]
≤ E

[
2∥∇fr(yk)−∇fr(x

∗)∥22 + 2∥ − ∇fr(x
∗) +∇fr(xt)−∇f(xt)∥22 | yk

]
= 2E

[
∥∇fr(yk)−∇fr(x

∗)∥22 | yk
]
+ 2E

[
∥ − ∇fr(x

∗) +∇fr(xt)−∇f(xt)∥22 | yk
]

(16.2)

where the inequality is because ∥a − b∥22 ≤ 2∥a∥22 + 2∥b∥22. Moreover, the second term in the
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right-hand side of (16.2) can be bounded as follows.

E
[
∥ − ∇fr(x

∗) +∇fr(xt)−∇f(xt)∥22 | yk
]

= E
[
∥ − ∇fr(x

∗) +∇fr(xt)∥22 − 2∇f(xt)
⊤(∇fr(xt)−∇fr(x

∗)) + ∥∇f(xt)∥22 | yk

]
= E

[
∥ − ∇fr(x

∗) +∇fr(xt)∥22 | yk
]
− 2∇f(xt)

⊤E [∇fr(xt)−∇fr(x
∗) | yk]

+ E
[
∥∇f(xt)∥22 | yk

]
= E

[
∥ − ∇fr(x

∗) +∇fr(xt)∥22 | yk
]
− 2∇f(xt)

⊤(∇f(xt)−∇f(x∗))

+ E
[
∥∇f(xt)∥22 | yk

]
= E

[
∥ − ∇fr(x

∗) +∇fr(xt)∥22 | yk
]
− 2∇f(xt)

⊤∇f(xt) + E
[
∥∇f(xt)∥22 | yk

]
= E

[
∥ − ∇fr(x

∗) +∇fr(xt)∥22 | yk
]
− E

[
∥∇f(xt)∥22 | yk

]
≤ E

[
∥ − ∇fr(x

∗) +∇fr(xt)∥22 | yk
]
.

(16.3)

Combining (16.2) and (16.3), it follows that

E
[
∥gk∥22 | yk

]
≤ 2E

[
∥∇fr(yk)−∇fr(x

∗)∥22 | yk
]
+ 2E

[
∥ − ∇fr(x

∗) +∇fr(xt)∥22 | yk
]

≤ 4β(f(yk)− f(x∗)) + 4β(f(xt)− f(x∗))

= 4β(f(yk)− f(x∗) + f(xt)− f(x∗)).

(16.4)

Applying the tower rule to (16.4),

E
[
∥gk∥22 | xt

]
= E

[
E
[
∥gk∥22 | yk

]
| xt

]
≤ E [4β(f(yk)− f(x∗) + f(xt)− f(x∗)) | xt]

= 4β(E [f(yk) | xt]− f(x∗) + f(xt)− f(x∗)).

(16.5)

Next, we consider the term −2ηg⊤k (yk − x∗) in (16.1).

E
[
−2ηg⊤k (yk − x∗) | yk

]
= −2ηE [gk | yk]

⊤ (yk − x∗)

= −2ηE [∇fr(yk)−∇fr(xt) +∇f(xt) | yk]
⊤ (yk − x∗)

= −2η∇f(yk)
⊤(yk − x∗)

≤ −2η(f(yk)− f(x∗)).

(16.6)

Again, applying the tower rule to (16.6),

E
[
−2ηg⊤k (yk − x∗) | xt

]
= E

[
E
[
−2ηg⊤k (yk − x∗) | yk

]
| xt

]
≤ E [−2η(f(yk)− f(x∗)) | xt]

= −2η(E [f(yk) | xt]− f(x∗))

(16.7)

Combining (16.1), (16.5), and (16.7), we obtain

E
[
∥yk+1 − x∗∥22 | xt

]
≤ E

[
∥yk − x∗∥22 | xt

]
− 2η(E [f(yk) | xt]− f(x∗))

+ 4η2β(E [f(yk) | xt]− f(x∗) + f(xt)− f(x∗))

= E
[
∥yk − x∗∥22 | xt

]
− 2η(1− 2ηβ)(E [f(yk) | xt]− f(x∗))

+ 4η2β(f(xt)− f(x∗))

(16.8)
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Summing (16.8) over k = 1, . . . , B, we obtain

2η(1− 2ηβ)
B∑

k=1

(E [f(yk) | xt]− f(x∗)) ≤ E
[
∥y1 − x∗∥22 | xt

]
− E

[
∥yB+1 − x∗∥22 | xt

]
+ 4η2βB(f(xt)− f(x∗))

≤ ∥xt − x∗∥22 + 4η2βB(f(xt)− f(x∗))

≤
(
2

α
+ 4η2βB

)
(f(xt)− f(x∗)).

(16.9)

Dividing each side of (16.9) by B,

2η(1− 2ηβ)(E [f (xt+1) | xt]− f(x∗)) = 2η(1− 2ηβ)(E

[
f

(
1

B

B∑
k=1

yk

)
| xt

]
− f(x∗))

≤ 2η(1− 2ηβ)
1

B

B∑
k=1

(E [f (yk) | xt]− f(x∗))

≤
(

2

αB
+ 4η2β

)
(f(xt)− f(x∗)).

(16.10)

Remember that

η =
1

6β
, B =

36β

α
.

Then it follows from (16.10) that

E [f (xt+1) | xt]− f(x∗)) ≤ 1

2η(1− 2ηβ)

(
2

αB
+ 4η2β

)
(f(xt)− f(x∗))

=
3β

1− 1/3

(
1

18β
+

1

9β

)
(f(xt)− f(x∗))

=
3

4
(f(xt)− f(x∗)).

(16.11)

Applying the tower rule to (16.11),

E [f (xt+1)]− f(x∗) ≤ 3

4
(E [f(xt)]− f(x∗))

≤
(
3

4

)t

(f(x1)− f(x∗)),

(16.12)

as required.

3 Proximal gradient descent

Recall the formulation of LASSO, given by

min
β

1

n
∥y −Xβ∥22 + λ∥β∥1.

Here, the objective function is non-differentiable because of the ℓ1-regularization term λ∥β∥1, and
therefore, it is non-smooth. On the other hand, the objective is convex, and we have a character-
ization of the subdifferential of ∥β∥1, so we can simply apply the subgradient method. To bound
the additive error by ϵ, the subgradient method requires O(1/ϵ2) iterations.
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If you take a closer look at the objective, it consists of two part. One part is smooth, and the other
part is something whose subdifferential is well understood. Can we use this structure to obtain a
better algorithm? The main subject of this section is developing an algorithm that converges to an
ϵ-approximate solution after O(1/ϵ) iterations.

3.1 Projection and proximal operator

We studied the projected gradient descent method, where at each step, we take a projection to the
constraint set. When the constraint set is given by C, the projection operator is given by

ProjC(x) = argmin
u∈C

1

2
∥u− x∥22 = argmin

u∈Rd

{
IC(u) +

1

2
∥u− x∥22

}
where IC(u) is the indicator function of C. This definition is proper as there is a unique minimizer
for the optimization problem. Hence, the projection operator is defined by the indicator function
and the proximity term (1/2)∥u− x∥22. The proximal operator is a generalization of the projection
operator replacing the indicator function by other general functions.

The proximal operator with respect to a convex function h is defined as follows.

Proxh(x) = argmin
u∈Rd

{
h(u) +

1

2
∥u− x∥22

}
.

Again the definition is proper because the objective of the optimization problem is strongly convex.
Hence, for any η > 0,

Proxηh(x) = argmin
u∈Rd

{
h(u) +

1

2η
∥u− x∥22

}
.

As projected gradient descent proceeds with the update rule

xt+1 = ProjC {xt − η∇f(xt)} ,

we can defined the proximal gradient method with the update rule

xt+1 = Proxηh(xt − η∇f(xt)).

In particular, when we take the indicator function IC for h, the proximal gradient method reduces
to the projeced gradient descent method.
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