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1 Outline

In this lecture, we study

• Online binary classification,

• Stochastic optimization through the lens of OCO,

• Stochastic gradient descent.

2 Convergence of stochastic gradient descent

Recall that stochastic gradient descent (SGD) proceeds as the following.

Algorithm 1 Stochastic gradient descent (SGD)

Initialize x1 ∈ C.
for t = 1, . . . , T do

Obtain an estimator ĝxt of some gt ∈ ∂f(xt).
Update xt+1 = ProjC {xt − ηtĝxt} for a step size ηt > 0.

end for
Return (1/T )

∑T
t=1 xt.

In this section, we analyze the convergence of SGD under the following assumption.

Assumption 1. Assume that ĝx satisfies

E[ĝx] = gx for some gx ∈ ∂f(x), E
[
∥ĝx∥2

]
≤ L2.

This assumption is analogous to Lipschitz continuity. Under the assumption, let us analyze the
performance of stochastic gradient descent given by Algorithm 1.

Theorem 15.1. Algorithm 1 with step sizes ηt = R/(L
√
t) satisfies

E

[
f

(
1

T

T∑
t=1

xt

)]
− f(x∗) ≤ 3LR

2
√
T

where the expectation is taken over the randomness in gradient estimation and x∗ ∈ argminx∈C f(x).
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2.1 Proof via online regret minimization

Suppose that E[ĝxt ] = gt ∈ ∂f(xt) for t ≥ 1. First, let us observe the following.

E

[
f

(
1

T

T∑
t=1

xt

)]
− f(x∗) ≤ E

[
1

T

T∑
t=1

f(xt)

]
− f(x∗)

=
1

T
E

[
T∑
t=1

(f(xt)− f(x∗))

]

≤ 1

T
E

[
T∑
t=1

g⊤t (xt − x∗)

]

=
1

T
E

[
T∑
t=1

E [ĝxt |xt]
⊤ (xt − x∗)

]

=
1

T
E

[
T∑
t=1

ĝ⊤xt
(xt − x∗)

]

where the inequalities are due to the convexity of f and the last equality is due to the tower rule.
Now let us consider functions f1, . . . , fT given by

ft(x) = ĝ⊤xt
x.

Then

T∑
t=1

ĝ⊤xt
(xt − x∗) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗)

≤
T∑
t=1

ft(xt)−min
x∈C

T∑
t=1

ft(x)

≤ 3

2
LR

√
T

where the last inequality is from the convergence result of online gradient descent. Note that this
upper bound holds regardless of any realization of ĝxt ’s. Therefore, the result follows.

2.2 Proof from the analysis of the subgradient method

Note that

E
[
∥xt+1 − x∗∥22 |xt

]
= E

[
∥ProjC(xt − ηtĝxt)− x∗∥22 |xt

]
≤ E

[
∥xt − ηtĝxt − x∗∥22 |xt

]
= ∥xt − x∗∥22 + η2tE

[
∥ĝxt∥

2
2 |xt

]
− 2ηtE [ĝxt |xt]

⊤ (xt − x∗)

= ∥xt − x∗∥22 + η2tE
[
∥ĝxt∥

2
2 |xt

]
− 2ηtg

⊤
t (xt − x∗)

≤ ∥xt − x∗∥22 + η2tE
[
∥ĝxt∥

2
2 |xt

]
− 2ηt(f(xt)− f(x∗)).
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Then, based on the tower rule,

E
[
∥xt+1 − x∗∥22

]
≤ E

[
∥xt − x∗∥22

]
+ η2tE

[
∥ĝxt∥

2
2

]
− 2ηt(E [f(xt)]− f(x∗))

≤ E
[
∥xt − x∗∥22

]
+ η2tL

2 − 2ηt(E [f(xt)]− f(x∗)).

Then it follows that

E [f(xt)]− f(x∗) ≤ 1

2ηt

(
E
[
∥xt − x∗∥22

]
− E

[
∥xt+1 − x∗∥22

])
+

ηt
2
L2.

Summing up this for t = 1, . . . , T and dividing each side by T , we obtain

1

T

T∑
t=1

E [f(xt)]− f(x∗) ≤ 1

T

T∑
t=1

E
[
∥xt − x∗∥22

]( 1

2ηt
− 1

2ηt−1

)
+

L2

2T

T∑
t=1

ηt

≤ R2

T

T∑
t=1

(
1

2ηt
− 1

2ηt−1

)
+

L2

2T

T∑
t=1

ηt

≤ LR

2
√
T

+
LR√
T
.

By convexity,

1

T

T∑
t=1

E [f(xt)] ≥ E

[
f

(
1

T

T∑
t=1

xt

)]
,

and therefore, the result follows.

2.3 Strongly convex functions

For strongly convex functions, we have the following convergence result.

Theorem 15.2. Assume the same conditions on ĝx and that f is α-strongly convex with respect
to the ℓ2 norm for some α > 0. Algorithm 1 with step sizes ηt = 2/(α(t+ 1)) satisfies

E

[
f

(
T∑
t=1

2t

T (T + 1)
xt

)]
− f(x∗) ≤ 2L2

α(T + 1)

where the expectation is taken over the randomness in gradient estimation and x∗ ∈ argminx∈C f(x).

Therefore, for Lipschitz continuous functions and functions that are stronngly convex and Lipschitz,
we recover the same convergence rate as the subgradient method.

2.4 No self-tuning property due to variance

For gradient descent, smoothness does make difference due to the self-tuning property. For smooth
functions, the convergence rate is O(1/T ) (we also saw the accelerated method achieving O(1/T 2)
rate). For smooth and strongly convex functions, we obtained O(γT ) rate for some 0 < γ < 1. Is
it the case for SGD as well? The answer is no.

The crucial property of smooth functions which we relied on in the convergence analysis was
the self-tuning property. For a smooth function f , as we get close to an optimal solution x∗ ∈
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argminx∈Rd f(x), the size of the gradient ∥∇f(x)∥2 gets smaller. However, even if f is smooth and
x goes to x∗, E

[
∥ĝx∥22

]
does not converge to 0.

Let us consider the mean squared error minimization problem given by

min
β

f(β) =
1

n

n∑
i=1

1

2
(yi − β⊤xi)

2.

Here, f is smooth because

∥∇f(β1)−∇f(β2)∥2 =

∥∥∥∥∥ 1n
n∑

i=1

(β1 − β2)
⊤xixi

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

|(β1 − β2)
⊤xi| ∥xi∥2

≤ ∥β1 − β2∥2

(
1

n

n∑
i=1

∥xi∥22

)
≤ M2∥β1 − β2∥2

where maxi∈[n] ∥xi∥ = M .

Next take the optimal solution β∗ ∈ argminβ f(β) which satisfies ∇f(β∗) = 0. Then sample a data
point (xi, yi) to obtain an unbiased estimator

ĝβ∗ = (yi − x⊤i β
∗)(−xi).

Here, if the data point (xi, yi) is not on the line y = β⊤x and xi is nonzero, then ĝβ∗ ̸= 0.

3 Mini-batch SGD

In this section, we consider the relationship between the variance in sampling stochastic gradients
and the convergence rate of SGD.

Assumption 2. Assume that ĝx satisfies

E[ĝx] = gx for some gx ∈ ∂f(x), Var(ĝx) ≤ σ2.

We further assume that
∥gx∥2 ≤ L for all gx ∈ ∂f(x).

This is in contrast to assuming that E
[
∥ĝx∥22

]
≤ L2 for all x. Basically, the objective function f is

L-Lipschitz continuous, and we obtain stochastic estimates of its subgradients. Note that

Var(ĝx) = E
[
∥ĝx − E[ĝx]∥22

]
= E

[
∥ĝx − gx∥22

]
.
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What does this imply in terms of the convergence of stochastic gradient descent? Note that

E
[
∥xt+1 − x∗∥22 |xt

]
= E

[
∥ProjC(xt − ηtĝxt)− x∗∥22 |xt

]
≤ E

[
∥xt − ηtĝxt − x∗∥22 |xt

]
= ∥xt − x∗∥22 + η2tE

[
∥ĝxt∥

2
2 |xt

]
− 2ηtE [ĝxt |xt]

⊤ (xt − x∗)

= ∥xt − x∗∥22 + η2tE
[
∥ĝxt∥

2
2 |xt

]
− 2ηtg

⊤
t (xt − x∗)

≤ ∥xt − x∗∥22 + η2tE
[
∥ĝxt∥

2
2 |xt

]
− 2ηt(f(xt)− f(x∗)).

Here, we look at the term E
[
∥ĝxt∥

2
2 |xt

]
. Note that

E
[
∥ĝxt∥

2
2 |xt

]
= E

[
∥ĝxt − gt + gt∥22 |xt

]
= E

[
∥ĝxt − gt∥22 |xt

]
+ E

[
∥gt∥22 |xt

]
+ 2E

[
g⊤t (ĝxt − gt)|xt

]
= E

[
∥ĝxt − gt∥22 |xt

]
+ ∥gt∥22 + 2g⊤t E [ĝxt − gt|xt]

= E
[
∥ĝxt − gt∥22 |xt

]
+ ∥gt∥22

≤ σ2 + L2.

Then, based on the tower rule,

E
[
∥xt+1 − x∗∥22

]
≤ E

[
∥xt − x∗∥22

]
+ η2t (σ

2 + L2)− 2ηt(E [f(xt)]− f(x∗))

Then it follows that

E [f(xt)]− f(x∗) ≤ 1

2ηt

(
E
[
∥xt − x∗∥22

]
− E

[
∥xt+1 − x∗∥22

])
+

ηt
2
(L2 + σ2).

Here, the last term in the right-hand side has L2 + σ2, instead of L2. For the deterministic case,
we had σ = 0, which recovers the analysis of the subgradient method. Hence, when the variance
term σ2 is large, the convergence rate gets worse. Therefore, one way to improve the convergence
of SGD is to reduce the variance.

One way to reduce the variance is through sampling a batch of stochastic gradients, instead of a
single one. Suppose that at x ∈ C, we sample ĝ1x, . . . , ĝ

B
x independently at random. Assuming

E
[
ĝ1x
]
= · · · = E

[
ĝBx
]
= gx for some gx ∈ ∂f(x),

it follows that

ĝx =
1

B

(
ĝ1x + · · ·+ ĝBx

)
is an unbiased estimator of gx. Since ĝ1x, . . . , ĝ

B
x are independent,

E
[
∥gx − ĝx∥22

]
= E

∥∥∥∥∥gx − 1

B

B∑
i=1

ĝix

∥∥∥∥∥
2

2

 =
1

B2

B∑
i=1

E
[∥∥gx − ĝix

∥∥2
2

]
≤ 1

B
σ2.

Therefore, taking ĝx as the average of a batch of the unbiased estimators ĝ1x, . . . , ĝ
B
x that are pairwise

independent, we can reduce the variance from σ2 to σ2/B. Note that sampling or computing a
gradient estimate ĝix can be parallelizable. Stochastic gradient descent that uses the average of a
batch of gradient estimates is often called mini-batch SGD.
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