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1 Outline

In this lecture, we study

• Online binary classification,

• Stochastic optimization through the lens of OCO,

• Stochastic gradient descent.

2 Applications of online convex optimization

2.1 Online binary classification

Let us consider a mathematical model to establish an email spam filtering system. Recall that we
used the support vector machine (SVM) for binary classification. Just to remind you what it was,
we find a pair of a coefficient vector w and a right-hand side value b to use the hyperplane w⊤x = b
to classify data points. Given a feature vector x, we assign it label sign(w⊤x− b) where sign(c) has
value 1 if c ≥ 0 and value −1 if c < 0. When a training set of multiple data is available, we can find
such a classifier (w, b) by solving a convex optimization problem whose objective is to minimize the
hinge loss.

However, in some scenarios, data points dynamically arrive so that we gradually accumulate the
data. In such cases, we may adjust our model over time, and the learning process continues. To
be more specific, let us consider the online binary classification problem described as follows. An
email is represented by its feature vector x ∈ Rd and label y ∈ {−1, 1}. The feature vector can
encode words and expressions written in it, while the label indicates whether the email is spam
or not. Let’s say that y = 1 indicates spam and y = −1 indicates valid. For each time slot t, we
repeat the following procedure.

• The spam filtering system prepares a classifier (wt, bt) based on the past emails represented
by (x1, y1), . . . , (xt−1, yt−1) ∈ Rd × {−1, 1}.

• New email with feature vector xt arrives.

• The spam filter predicts that its label is sign(w⊤
t xt − b), while the true label of the email is

yt.

• The spam filter incurs a loss of max{0, 1− yt(w
⊤
t xt − b)}.

After T emails, the cumulative loss is given by

T∑
t=1

max{0, 1− yt(w
⊤
t xt − b)}.
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Compared to a best classifier, we incur

T∑
t=1

max{0, 1− yt(w
⊤
t xt − b)} − min

(w,b)∈Rd×R

T∑
t=1

max{0, 1− yt(w
⊤xt − b)}

more loss. Denoting the loss function at each time t as

ft(w, b) = max{0, 1− yt(w
⊤xt − b)},

the excess cumulative loss is rewritten as

T∑
t=1

ft(wt, bt)− min
(w,b)∈Rd×R

T∑
t=1

ft(w, b).

Therefore, the online binary classification problem is an instance of online convex optimization
where the best fixed decision corresponds to the best spam classifier.

2.2 Stochastic optimization

Stochastic optimization (SO) is an optimization problem of the following form.

minimize
x∈C

Eξ∼P [h(x, ξ)]

where

• ξ is a random parameter vector whose underlying distribution is given by P,

• h(x, ξ) is convex with respect to x for any fixed ξ,

• C is the feasible set for the decision vector x.

Then
f(x) = Eξ∼P [h(x, ξ)]

is convex. For example, for the linear regression problem, we consider

h(β, (x, y)) =
1

2
(y − β⊤x)2,

and

minimize E(x,y)∼P [h(β, (x, y))] = minimize E(x,y)∼P

[
1

2
(y − β⊤x)2

]
where x is the feature vector, y is the response variable, and (x, y) follows distribution P.

We can solve the stochastic optimization problem based on online convex optimization. At each
iteration t, we sample a random parameter vector ξt from P, based on which we update our decision
vector. To be more precise, we start with a decision vector x1 ∈ C. Then we obtain a random
vector ξ1, and we adjust our decision vector to obtain a new decision vector x2. We repeat this
procedure for T time steps. We can relate this process to the online convex optimization framework.
For t = 1, . . . , T , we define ft as

ft(x) = h(x, ξt).
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We decide xt, after which we observe random vector ξt. Hence, we can look at

T∑
t=1

ft(xt)−min
x∈C

T∑
t=1

ft(x) =

T∑
t=1

h(xt, ξt)−min
x∈C

T∑
t=1

h(x, ξt),

which is the regret of the corresponding online convex optimization problem. How does it relate to
solving the stochastic optimization problem? For stochastic optimization, we consider the average
of x1, . . . , xT as a candidate solution and compute the optimality gap given by

Eξ1,...,ξT∼P

[
f

(
1

T

T∑
t=1

xt

)]
− f(x∗)

where the expectation is taken over the randomness in choosing x2, . . . , xT and x∗ ∈ argminx∈C f(x).

Theorem 14.1. The optimality gap for SO and the regret for OCO satisfy the following relation.

Eξ1,...,ξT∼P

[
f

(
1

T

T∑
t=1

xt

)]
− f(x∗) ≤ 1

T
Eξ1,...,ξT∼P

[
T∑
t=1

ft(xt)−min
x∈C

T∑
t=1

ft(x)

]
.

Proof. First we deduce that

Eξ1,...,ξT∼P

[
f

(
1

T

T∑
t=1

xt

)]
− f(x∗) ≤ Eξ1,...,ξT∼P

[
1

T

T∑
t=1

f (xt)

]
− f(x∗)

=
1

T

T∑
t=1

Eξ1,...,ξT∼P [f (xt)]−
1

T

T∑
t=1

f(x∗)

=
1

T

T∑
t=1

Eξ1,...,ξt−1∼P [f (xt)]−
1

T

T∑
t=1

f(x∗).

Note that

T∑
t=1

Eξ1,...,ξt−1∼P [f (xt)]−
T∑
t=1

f(x∗)

=
T∑
t=1

Eξ1,...,ξt−1∼P [Eξt∼P [h(xt, ξt) | ξ1, . . . , ξt−1]]−
T∑
t=1

Eξt∈P [h(x
∗, ξt)]

=

T∑
t=1

Eξ1,...,ξt∼P [h(xt, ξt)]−
T∑
t=1

Eξ1,...,ξt∼P [h(x
∗, ξt)]

=

T∑
t=1

Eξ1,...,ξT∼P [h(xt, ξt)]−
T∑
t=1

Eξ1,...,ξT∼P [h(x
∗, ξt)]

= Eξ1,...,ξT∼P

[
T∑
t=1

h(xt, ξt)−
T∑
t=1

h(x∗, ξt)

]

= Eξ1,...,ξT∼P

[
T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗)

]

≤ Eξ1,...,ξT∼P

[
T∑
t=1

ft(xt)−min
x∈C

T∑
t=1

ft(x)

]
.
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Therefore, we obtain

Eξ1,...,ξT∼P

[
f

(
1

T

T∑
t=1

xt

)]
− f(x∗) ≤ 1

T
Eξ1,...,ξT∼P

[
T∑
t=1

ft(xt)−min
x∈C

T∑
t=1

ft(x)

]
,

which provides an upper bound on the optimality gap for stochastic optimization.

This in turn implies that by designing an online algorithm that minimizes the regret term for
the online convex optimization problem, we can solve the stochastic optimization problem. The
following is the application of online gradient descent to our stochastic optimization setting.

Algorithm 1 Online gradient descent for stochastic optimization

Initialize x1 ∈ C.
for t = 1, . . . , T do

Obtain a random vector ξt ∼ P and a subgradient g(xt, ξt) ∈ ∂h(xt, ξt).
Obtain xt+1 = ProjC {xt − ηtgt} for a step size ηt > 0.

end for

In fact, Algorithm 1 is the so-called stochastic gradient descent method. In particular, it is well-
known that

Eξt∼P [g(xt, ξt)] ∈ ∂f(xt),

which means that g(xt, ξt) is an unbiased estimator of a subgradient of f at xt. This is what we
need for the convergence of stochastic gradient descent!

3 Stochastic gradient descent

Although stochastic gradient descent (SGD) on its own is a very important subject of study in
optimization and machine learning, we present it as an application of online gradient descent. This
section will be a gentle introduction to SGD.

Let us get back to the offline convex optimization stated as

min
x∈C

f(x).

If we have an access to its gradient or one of its subgradients, then we can apply gradient descent or
the subgradient method. However, depending on situations, it may not be realistic to assume that
we have an oracle that provides exact gradients. For example, we have just considered the stochastic
optimization setting where f is given by f(x) = Eξ∼P [h(x, ξ)], the expectation of a random function.
Here, ∇f(x) = Eξ∼P [∇h(x, ξ)], to compute which we need to know the distribution P in general.
Instead of computing the expectation exactly, what we did was to obtain a sample ξt so that we
may use ∇h(x, ξt) for each iteration t. Here ∇h(x, ξt) is an unbiased estimator of ∇f(x).

Another example is the mean squared error minimization problem for regression.

min
β

f(β) =
1

n

n∑
i=1

1

2
(yi − β⊤xi)

2

where (x1, y1), . . . , (xn, yn) are the given data. In fact, this setting is also a stochastic optimization
problem as we can define P as the empirical distribution over the n samples. To be more specific,

P ((x, y) = (xi, yi)) =
1

n
.
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Then the gradient of f at β is given by

∇f(β) = E(x,y)∼P[∇h(β, (x, y))] = − 1

n

n∑
i=1

(yi − β⊤xi)xi.

In this example, we know the precise description of the underlying distribution, from which we can
compute the exact gradient. Then, what is the problem? Here, to compute the gradient, we have
to go through all data points (x1, y1), . . . , (xn, yn), which may not be practical especially when the
number of data is large. For this scenario, a strategy is to obtain an estimation of the gradient.
We sample a data (xr, yr) from the data set uniformly at random and obtain

gr = −(yr − β⊤xr)xr.

Here r is a random variable following the uniform distribution over {1, . . . , n}. Note that

E[gr] =
n∑

i=1

P(r = i) · gi =
n∑

i=1

1

n
· gi = − 2

n

n∑
i=1

(yi − β⊤xi)xi = ∇f(β).

Hence, gr is an unbiased estimator of gr. What we do next is to use gr to replace ∇f(β) when
running gradient descent. More generally, let g̃x be an unbiased estimator of the gradient of f at
x or the subgradient for f at x.

Algorithm 2 Stochastic gradient descent (SGD)

Initialize x1 ∈ C.
for t = 1, . . . , T do

Obtain an estimator ĝxt of some g ∈ ∂f(xt).
Update xt+1 = ProjC {xt − ηtĝxt} for a step size ηt > 0.

end for
Return (1/T )

∑T
t=1 xt.

Assume that g̃x satisfies

E[ĝx] = g for some g ∈ ∂f(x), E
[
∥ĝx∥2

]
≤ L2.

Under this assumption, let us analyze the performance of stochastic gradient descent given by
Algorithm 2.

Theorem 14.2. Algorithm 2 with step sizes ηt = R/(L
√
t) satisfies

E

[
f

(
1

T

T∑
t=1

xt

)]
− f(x∗) ≤ 3LR

2
√
T

where the expectation is taken over the randomness in gradient estimation and x∗ ∈ argminx∈C f(x).
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Proof. Suppose that E[g̃xt ] = gt ∈ ∂f(xt) for t ≥ 1. First, let us observe the following.

E

[
f

(
1

T

T∑
t=1

xt

)]
− f(x∗) ≤ E

[
1

T

T∑
t=1

f(xt)

]
− f(x∗)

=
1

T
E

[
T∑
t=1

(f(xt)− f(x∗))

]

≤ 1

T
E

[
T∑
t=1

g⊤t (xt − x∗)

]

=
1

T
E

[
T∑
t=1

g̃⊤xt
(xt − x∗)

]

where the inequalities are due to the convexity of f . Now let us consider functions f1, . . . , fT given
by

ft(x) = g̃⊤xt
x.

Then

T∑
t=1

g̃⊤xt
(xt − x∗) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗)

≤
T∑
t=1

ft(xt)−min
x∈C

T∑
t=1

ft(x)

≤ 3

2
LR

√
T

where the last inequality is from the convergence result of online gradient descent. Note that this
upper bound holds regardless of any realization of g̃xt ’s. Therefore, the result follows.
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