
IE 539: Convex Optimization KAIST, Fall 2022
Lecture #13: Accelerated method and Online convex optimization October 13, 2022
Lecturer: Dabeen Lee

1 Outline

In this lecture, we study

• Accelerated method,

• Online convex optimization,

• Online gradient descent.

2 Accelerated gradient method

From the last lecture, we learned that for smooth functions, there is some gap between the con-
vergence rate of gradient descent and the oracle lower bound. Then the question we asked was
as to whether we can find an algorithm that achieves a better convergence rate or improve the
lower bound. The answer to the question is that there is a better algorithm, which closes the
gap, thereby achieving the optimal asymptotic convergence rate. The algorithm is due to Nes-
terov [Nes83, Nes04], and it is referred to as Nesterov’s accelerated gradient descent. Let us describe
the algorithm and explain how it achieves a better convergence rate.

The main idea behind Nesterov’s acceleration is to use “momentum”, so the algorithm is often
called gradient descent with momentum. Recall that gradient descent for a β-smooth function
follows the update rule of

xt+1 = xt −
1

β
∇f(xt)

from a given point xt. The idea of momentum is to incorporate the direction xt − xt−1 that we
took when moving from xt−1 to xt to obtain the next iterate xt+1. Then xt+1 is determined by not
only the previous iterate xt but also xt−1 which is the one before xt. Figure 13.1 illustrates how
the idea of momentum applies. Instead of applying the gradient descent update to xt, we move a

Figure 13.1: Illustration of gradient descent with momentum

bit further from xt along the momentum direction that we took from xt−1 to xt. Let γt > 0 be a
weight, and

yt = xt + γt(xt − xt−1).
Then we apply the gradient descent update on yt to obtain the next point xt+1, as follows.

xt+1 = yt −
1

β
∇f(yt).

1



This is basically the outline of Nesterov’s accelerated gradient descent.

Algorithm 1 Nesterov’s accelerated gradient descent

Initialize x1 ∈ dom(f).
Set x0 = x1.
for t = 1, . . . , T do

yt = xt + γt(xt − xt−1) for some γt > 0.
xt+1 = yt − 1

β∇f(yt).
end for
Return xT+1.

The following shows a convergence result of the accelerated gradient descent method for smooth
functions.

Theorem 13.1. Let f : Rd → R be a β-smooth convex function with respect to the `2 norm. We
set γt by the following procedure.

λ0 = 0, λt =
1 +

√
1 + 4λ2t−1

2
, γt =

λt − 1

λt+1
.

Then

f(xT )− f(x∗) ≤ 2β‖x1 − x∗‖22
T 2

where x∗ is an optimal solution to minx∈Rd f(x).

Hence, the convergence rate is O(1/T 2), which matches the oracle lower bound. The number of
required iterations to bound the error by ε is O(1/

√
ε). The next result is for functions that are

both smooth and strongly convex.

Theorem 13.2. Let f : Rd → R be a convex function that is β-smooth and α-strongly convex with
respect to the `2 norm. We set

γt =

√
κ− 1√
κ+ 1

where κ = β/α. Then

f(xT )− f(x∗) ≤ α+ β

2

(√
κ− 1√
κ+ 1

)(T−1)/2
‖x1 − x∗‖22.

where x∗ is an optimal solution to minx∈Rd f(x).

3 Online convex optimization

We have so far discussed formulations and algorithms for convex optimization. In this section,
we consider a different yet closely related setting. Online convex optimization (OCO) is an online
learning problem, that is to make a squence of predictions based on the history of past decisions
and their results. The framework of OCO is closely related to game theory, statistical learning
theory, and stochastic modelling as well as convex optimization. The contents of this section are
based on the text of Hazan [Haz16].

Before we discuss some specific examples, let us provide a concrete problem formulation. The
following gives the list of main components.

2



1. (A sequence of convex loss functions) We are given convex loss functions f1, . . . , fT where T
is the length of time horizon. The functions are revealed one at a time sequentially.

2. (Sequential decisions) At each time step t, we get to choose a decision/prediction xt before
the function ft for the time step is revealed. In other words, the function ft is unknown to
the decision maker when making a decision.

3. (Bounded domain) The set of available decisions (the feasible set), denoted C, is bounded.

Then we compute the accumulated losses incurred over the T time steps.

T∑
t=1

ft(xt).

This is indeed an online learning problem because, to make a new decision xt+1, we may use the
history of the past decisions and their corresponding losses

x1, f1(x1), x2, f2(x2), . . . , xt, ft(xt)

although the loss function ft+1 for time step t+ 1 is not yet given.

3.1 Examples

Let us provide some applications of the framework.

• (Online spam filtering) We receive emails repeatedly, for each of which we apply an existing
spam-filtering system. A spam-filtering system has a list of words and expressions, based on
which, it can predict whether an email is spam or valid. When an email that is classified as
valid by the existing filter tunrs out to be spam, we have to update the filter so that we can
filter similar spam emails later.

• (Online advertisement selection) A web browser selects a collection of online advertisements
for its ad slots. The web browser posts a catalog of online ads and observes their popularity
from users by the click-through rates. Later, the browser can change its ad selection based
on its prediction about the user demands.

3.2 Stochastic vs adversarial

Where do f1, . . . , fT come from?

• (Stochastic i.i.d.) There is a distribution of functions, and at each time step, a function is sam-
pled from the distribution independently from the history. Here, f1, . . . , fT are independent
and identically distributed (i.i.d.).

• (Adversary) There is an adaptive adversary or an environment that can observe the history
of decisions, based on which it chooses the next loss function. In contrast, the stochastic i.i.d.
setting is non-adaptive.

Basically, the problem is that we make decisions to reduce our loss, but at the same time, the
environment can choose loss functions to increase our loss. With this regard, the stochastic i.i.d.
setting and the adversarial setting are different. We can imagine that an adptive adversary can
make our loss worse than the non-adaptive stochastic sampling of loss functions.

3



3.3 Performance metric: the notion of regret

Let A be an algoriothm for online convex optimization, and let xA1 , . . . , x
A
T denote the decisions

made by algorithm A. We have defined the cumulative loss, minimizing which is our goal basically.
At the same time, to measure how close algorithm A is to being optimal, we compare the cumulative
loss of algorithm A against the cumulative loss of the best fixed decision.

T∑
t=1

ft(x
A
t )−min

x∈C

T∑
t=1

ft(x).

In the previous subsection, we discussed the role of adaptive adversary in terms of choosing the
loss functions f1, . . . , fT . Basically, an adaptive adversary may select the worst loss functions that
deteriorate the cumulative loss of algorithm A. Motivated by this, we define the regret of A as the
worst-case loss gap as follows.

RegretT (A) = sup
f1,...,fT

{
T∑
t=1

ft(x
A
t )−min

x∈C

T∑
t=1

ft(x)

}
.

We focus on developing algorithms that minimize the regret, for which we can analyze the notion
of regret. By taking a sequence of actions to minimize the regret, we learn and get close to the
action of the best decision maker.

Our goal is to design an algorithm A whose regret is sublinear in T , which means that RegretT (A) =
o(T ). What does this indicate? We look at the time averaged optimality gap.

1

T

T∑
t=1

ft(x
A
t )−min

x∈C

1

T

T∑
t=1

ft(x) ≤ RegretT (A)

T
= o(1).

Hence, a sublinear regret means that the time averaged optimality gap goes to 0 as T increases. In
particular, in the offine setting where f1 = · · · = fT = f , the statement is equivalent to

1

T

T∑
t=1

f(xAt )−min
x∈C

f(x) ≤ RegretT (A)

T
= o(1),

which corresponds to a convergence of gradient descent.

3.4 Online (sub)gradient descent

There is a simple algorithm for online convex optimization that minimizes regret. In fact, a modi-
fication of gradient descent works for the online setting, and it is called online gradient descent.

Algorithm 2 Online gradient descent (OGD)

Initialize x1 ∈ C.
for t = 1, . . . , T do

Observe ft(xt) and obtain gt ∈ ∂ft(xt).
Obtain xt+1 = ProjC {xt − ηtgt} for a step size ηt > 0.

end for

The only distinction compared to (sub)gradient method for the offline setting is that we obtain a
subgradient from the subdifferentials ∂ft(xt) of functions ft that are sequentially revealed. This
simple algorithm does achieve an aymptotically optimal regret.

4



Theorem 13.3. Suppose that ‖gt‖2 ≤ L for any gt ∈ ∂ft(x) for every x ∈ Rd and t ≥ 1. Then
online gradient descent given by Algorithm 2 with step sizes ηt = R/(L

√
t) where R = supx,y∈C ‖x−

y‖22 satisfies
T∑
t=1

ft(xt)−min
x∈C

T∑
t=1

ft(x) ≤ 3

2
LR
√
T .

Proof. The analysis of online gradient descent is quite similar to that of gradient descent. Let
x∗ ∈ argminx∈C

∑T
t=1 ft(x). Note that

‖xt+1 − x∗‖22 ≤ ‖xt − ηtgt − x∗‖22
= ‖xt − x∗‖22 + η2t ‖gt‖22 − 2ηtg

>
t (xt − x∗)

≤ ‖xt − x∗‖22 + η2tL
2 − 2ηt(ft(xt)− ft(x∗))

where the first inequality is due to the contraction property of the projection operator and the
second inequality is due to the convexity of ft. Then it follows that

ft(xt)− ft(x∗) ≤
1

2ηt

(
‖xt − x∗‖22 − ‖xt+1 − x∗‖22

)
+
ηt
2
L2.

Adding up these inequalities for t = 1, . . . , T , we obtain

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗) ≤

T∑
t=1

1

2ηt

(
‖xt − x∗‖22 − ‖xt+1 − x∗‖22

)
+

T∑
t=1

ηt
2
L2

≤
T∑
t=1

‖xt − x∗‖22
(

1

2ηt
− 1

2ηt−1

)
+
L2

2

T∑
t=1

ηt

≤ R2

2

T∑
t=1

(
1

ηt
− 1

ηt−1

)
+
L2

2

T∑
t=1

ηt

=
R2

2
· 1

ηT
+
L2

2

T∑
t=1

R

L
√
t

≤ 3

2
RL
√
T

where we set 1/η0 to be 0, the second inequality is because ‖xt+1−x∗‖22 ≥ 0, and the last inequality
is because

∑T
t=1 1/

√
t ≤ 2

√
T .

Therefore, for Lipschitz continuous functions, OGD achieves the regret of O(
√
T ). Can we do better

than this?

Theorem 13.4. Any algorithm for online convex optimization incurs Ω(LR
√
T ) regret in the worst

case. The same statement holds even when the loss functions are generated from a fixed stationary
distribution (the stochatic i.i.d. setting).

For strongly convex and Lipschitz continuous functions, we can achieve a logarithmic regret!

Theorem 13.5. Suppose that ‖gt‖2 ≤ L for any gt ∈ ∂ft(x) for every x ∈ Rd and t ≥ 1. Moreover,
f1, . . . , fT are α-strongly convex with respect to the `2 norm. Then online gradient descent given
by Algorithm 2 with step sizes ηt = 1/(αt) satisfies

T∑
t=1

ft(xt)−min
x∈C

T∑
t=1

ft(x) ≤ L2

2α
(1 + log T ).

5



References

[Haz16] Elad Hazan. Introduction to online convex optimization. Found. Trends Optim.,
2(3–4):157–325, aug 2016. 3

[Nes83] Yurii Nesterov. A method of solving a convex programming problem with convergence
rate o(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983. 2

[Nes04] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer
Academic Publishers, Norwell, 2004. 2

6


	Outline
	Accelerated gradient method
	Online convex optimization
	Examples
	Stochastic vs adversarial
	Performance metric: the notion of regret
	Online (sub)gradient descent
	Application: stochastic gradient descent


