
IE 539: Convex Optimization KAIST, Fall 2022
Lecture #12: Constrained optimization October 11, 2022
Lecturer: Dabeen Lee

1 Outline

In this lecture, we study

• Projected gradient descent,

• Conditional gradient method,

• Lower bounds on the iteration complexity of gradient methods.

2 Projected gradient descent

In some of our previous lectures that the gradient decesnt method converges to an optimal solution
of an unconstrained convex minimization problem under various settings. The gradient descent
method updates the iterate by the rule

xt+1 = xt − ηt∇f(xt)

where xt is the tth iterate, ηt is the step size for iteration t, and ∇f(xt) is the gradient of the
objective function f at xt. If f is not differentiable, we may take a subgradient g ∈ ∂f(xt) at xt
instead of the gradient.

For constrained optimization, however, the update rule does not necessarily generate a feasible
solution. A natural fix for this is that we take the projection of the point xt − ηt∇f(xt) onto the

Figure 12.1: Infeasible point after a gradient descent update and projection

feasible set C. What we have just discussed is basically the projected gradient descent method! It is
basically gradient descent with projection. To formalize, let us give a pseudo-code of the projected
gradient descent method. In Algorithm 1, we use the operator ProjC(·), which is formally defined
as

ProjC(z) = argmin
x∈C

1

2
‖x− z‖22 for z ∈ Rd.

Then it is straightforward that

ProjC(z) = argmin
x∈C

‖x− z‖2,

1

Algorithm 1 Projected gradient descent method

Initialize x1 ∈ C.
for t = 1, . . . , T do

xt+1 = ProjC {xt − ηt∇f(xt)} for a step size ηt > 0.
end for
Return xT+1.

and in words, ProjC(z) is a point C that is closest to point z with respect to the `2 norm distance.
Although we have discussed the following lemma in a previous lecture, we include it again to make
this note self-contained.

Lemma 12.1. Let x ∈ C and z ∈ Rd. Then

(ProjC(z)− z)>(ProjC(z)− x) ≤ 0 for all x ∈ C.

Proof. We can apply the optimality condition to the definition ProjC(z) = argminx∈C
1
2‖x −

z‖22 for z ∈ Rd. The gradient of 1
2‖x− z‖

2
2 at x = ProjC(z) is (ProjC(z)− z). Then the statement

is precisely the optimality condition for ProjC(z).

By definition, xt+1 is the point in C that is closest to xt−ηt∇f(xt) with respect to the `2 distance.
Moreover, we have another interpretation of the update rule based on the following.

xt+1 = argmin
x∈C

{
1

2
‖x− xt + µt∇f(xt)‖22

}
= argmin

x∈C

{
f(xt) +∇f(xt)

>(x− xt) +
1

2ηt
‖x− xt‖22

}
,

which means that xt+1 is the solution in C minimizing the quadratic approximation of f at xt.

Hereinafter, we introduce notations yt+1 to denote xt − ηt∇f(xt) for simpler presentations. Then
the update rule can be written as

yt+1 = xt − ηt∇f(xt),

xt+1 = ProjC(yt+1)

for t = 1, . . . , T . The analysis of projected gradient descent is quite similar to that of gradient
descent for unconstrained minimization. The following is useful to make the analysis for gradient
descent go through for the case of projected gradient descent.

Lemma 12.2. For any t, we have

‖xt+1 − x∗‖2 ≤ ‖yt+1 − x∗‖2

where x∗ is an optimal solution to minx∈C f(x).

Proof. We use Lemma 12.1 and the fact that xt+1 = ProjC(yt+1). By Lemma 12.1,

(xt+1 − yt+1)
>(xt+1 − x∗) ≤ 0.

Since xt+1 − yt+1 = xt+1 − x∗ + x∗ − yt+1, the inequality implies that

‖xt+1 − x∗‖22 ≤ (yt+1 − x∗)>(xt+1 − x∗) ≤ ‖yt+1 − x∗‖2‖xt+1 − x∗‖2

where the last inequality is due to the Cauchy-Schwarz inequality. Dividing each side by ‖xt+1 −
x∗‖2, we obtain the result.

2

By Lemma 12.2, we deduce that

‖xt+1 − x∗‖22 ≤ ‖yt+1 − x∗‖2
= ‖xt − x∗‖22 − 2ηt∇f(xt)

>(xt − x∗) + η2t∇f(xt)
2

≤ ‖xt − x∗‖22 − 2ηt(f(xt)− f(x∗)) + η2t∇f(xt)
2,

which appears in the convergence analysis of gradient descent for Lipschitz continuous functions.
Note that the only difference from the unconstrained case is the first inequality, which used to be
an equality for the unconstrained case where yt+1 = xt+1. Based on this, we recover the same
convergence theorem for projected gradient descent for the case of Lipschitz continuous functions.
In fact, we can work over the projected subgradient method, which is as the name suggests the
subgradient method with projection for the constrained minimization.

Algorithm 2 Projected subgradient method

Initialize x1 ∈ C.
for t = 1, . . . , T do

Obtain a subgradient gt ∈ ∂f(xt).
xt+1 = ProjC {xt − ηtgt} for a step size ηt > 0.

end for
Return (

∑T
t=1 ηt)

−1∑T
t=1 ηtxt.

The following theorem shows the convergence of the projected subgradient method for functions
that have bounded subgradients.

Theorem 12.3. Let f : Rd → R be a convex function such that ‖g‖2 ≤ L for any g ∈ ∂f(x)
for every x ∈ Rd. Let {xt : t = 1, . . . , T} be the sequence of iterates generated by the projected
subgradient method with step size ηt = ‖x1 − x∗‖2/L

√
T for each t. Then

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ L‖x1 − x∗‖2√

T

where x∗ is an optimal solution to minx∈C f(x).

Moreover, we also recover the same “asymptotic” convergence rate for strongly convex, smooth,
and strongly convex & smooth functions. In particular,

Theorem 12.4. Let f : Rd → R be a β-smooth convex function, and let {xt : t = 1, . . . , T} be the
sequence of iterates generated by gradient descent with step size ηt = 1/β for each t. Then

f(xT)− f(x∗) ≤ 3β‖x1 − x∗‖22 + f(x1)− f(x∗)

T

where x∗ is an optimal solution to minx∈C f(x).

3 Conditional gradient method

We saw that the projected gradient descent minimizes a smooth function with a convergence rate
of O(1/T). There are a couple of issues.

3

1. The projection step onto the feasible set C can be expensive.

2. We have used the `2 norm to define smoothness.

Each projection step essentially amounts to solving an optimization problem, which can be difficult
depending on the structure of C. Even for the case when C is a polyhedron, the projection onto
C can an expensive procedure. The second point is that in our analysis of gradient descent for
smooth functions, there are parts that do need smoothness with respect to the `2 norm. It is often
the case that smoothness in the `2 norm is implied by smoothness in another norm, e.g., the `1
norm.

‖∇f(x)−∇f(y)‖2 ≤
√
d‖∇f(x)−∇f(y)‖∞ ≤

√
dβ‖x− y‖1 ≤ dβ‖x− y‖2.

The implication of this inequality is the following. Even if a function is smooth in the `1 norm with
a tiny smoothness parameter β, the smoothness parameter with respect to the `2 norm can blow
up by a factor of dimension d, in which case we lose the desired dimension-free property.

Motivated by these two issues, we consider the conditional gradient method, introduced by Frank
and Wolfe in 1956 [FW56]. Named after the author, the conditional gradient method is often
referred to as the Frank-Wolfe algorithm. A pseudo-code of the method is given as follows.

Algorithm 3 Frank-Wolfe algorithm

Initialize x1 ∈ C.
for t = 1, . . . , T − 1 do

Take vt ∈ argminv∈C ∇f(xt)
>v.

Update xt+1 = (1− λt)xt + λtvt for some 0 < λt < 1.
end for
Return xT .

The main component of the conditional gradient method is to compute the direction vt by solving

min
v∈C
∇f(xt)

>v

whose objective is a linear function. In particular, when C is a polyhedron, it is just a linear
program. This is in contrast to the projected gradient descent which has a quadratic objective for
each projection step. For this reason, the conditional gradient method is called “projection-free”.

Another difference compared to the projected gradient descent is that the direction we take for an
update can be different from −∇f . We provide Figure 12.2 for a pictorial description of the update
rule. vt is a point up to which we can move as far as we can in the direction of −∇f(xt) within C.
Then we take a convex combination of the current point xt and vt to obtain the new iterate xt+1.

Definition 12.5. We say that a differentiable function f : Rd → R is β-smooth with respect to a
norm ‖ · ‖ for some β > 0 if

‖∇f(x)−∇f(y)||∗ ≤ β‖x− y‖

holds for any x, y ∈ Rd where ‖ · ‖∗ denotes the dual norm of ‖ · ‖.

The next theorem shows that conditional gradient descent converges with rate O(1/T) for any
smooth function with repsect to an arbitrary norm.

4

Figure 12.2: Illustration of an update from conditional gradient descent

Theorem 12.6. Let f : Rd → R be a convex function that is β-smooth with respect to a norm ‖ · ‖
for some β > 0. Let {xt : t = 1, . . . , T} be the sequence of iterates generated by conditional gradient
descent with λt = 2/(t+ 1) for each t. Then for any t ≥ 2,

f(xt)− f(x∗) ≤ 2βR2

t+ 1

where x∗ is an optimal solution to minx∈C f(x) and R = supx,y∈C ‖x− y‖.

Proof. Note that

f(xt+1)− f(xt) ≤ ∇f(xt)
>(xt+1 − xt) +

β

2
‖xt+1 − xt‖2

= λt∇f(xt)
>(vt − xt) +

β

2
‖xt+1 − xt‖2

≤ λt∇f(xt)
>(x∗ − xt) +

β

2
‖xt+1 − xt‖2

≤ λt(f(x∗)− f(xt)) +
β

2
‖xt+1 − xt‖2

where the first inequality is from the β-smoothness of f , the first equality follows from xt+1 =
(1 − λt)xt + λtvt, the second inequality is due to the definition of vt = argminv∈C ∇f(xt)

>v, and
the last inequality is by the convexity of f . Since

‖xt+1 − xt‖ = λt‖vt − xt‖ ≤ λtR,

it follows that

f(xt+1)− f(x∗) ≤ (1− λt)(f(xt)− f(x∗)) +
βλ2tR

2

2

=
t− 1

t+ 1
(f(xt)− f(x∗)) +

2βR2

(t+ 1)2
.

By this inequality, it follows that

f(x2)− f(x∗) ≤ βR2

2
≤ 2βR2

3
.

Then by the induction hypothesis,

f(xt+1)− f(x∗) ≤ 2(t− 1) + 2

(t+ 1)2
βR2 =

t

(t+ 1)2
2βR2 ≤ 1

t+ 2
βR2,

as required.

5

4 Lower bounds on the iteration complexity of gradient methods

We learned and analyzed the convergence rate of gradient descent and the subgradient method.
In particular, for Lipschitz continuous functions, we know that the subgradient method guarantees
the convergence rate of O(1/

√
T) and requires O(1/ε2) iterations to achieve the error bounded by ε.

For smooth convex functions, gradient descent achieves O(1/T) convergence rate, and the number
of required iterations to bound the error by ε is O(1/ε). For functions that are both smooth and
strongly convex, the convergence rate of gradient descent is O(γT) for some 0 < γ < 1, and the
number of required iterations is O(log(1/ε)) to achieve an error of ε.

A natural question is as to whether we can find an algorithm that achieves a better convergence
rate. Regarding this question, we conceptualize the oracle complexity of an algorithm. An oracle

Figure 12.3: Oracle that returns the function value and the first-order information

for convex minimization minx∈C f(x) takes a point x in C as an input and returns its function value
f(x) as well as the first-order information, i.e., the gradient ∇f(x) or a subgradient gt ∈ ∂f(x).
Then the oracle complexity of an oracle-based algorithm counts the number of oracle calls to
terminiate. An oracle-based algorithm can be illustrated as follows. Basically, it picks a new

Figure 12.4: Illustration of an oracle-based algorithm

solution based on the history of past iterates and their first-order information.

We present lower bound results on the oracle complexity given by Nemirovski and Yudin in
1983 [NY83] (see also Nesterov [Nes03] and Bubeck [Bub15]). We make the assumption that
x1 = 0 and xt+1 belongs to the span of g1, . . . , gt where gs ∈ ∂f(xs).

Theorem 12.7 (See [Bub15]). There exists a convex and L-Lipschitz continuous function f : Rd →
R for some L > 0 such that iterates x1, . . . , xt with t ≤ d generated by any oracle-based algorithm
satisfies the following:

min
1≤s≤t

f(xs)− min
x∈B2(R)

f(x) ≥ RL

2(1 +
√
t)

where B2(R) = {x ∈ Rd : ‖x‖2 ≤ R} and R > 0.

Theorem 12.8 (See [Bub15]). There exists a convex and β-smooth fuction f : Rd → R with respect
to the `2-norm for some β > 0 such that iterates x1, . . . , xt with t ≤ (d − 1)/2 generated by any
oracle-based algorithm satisfies the following:

min
1≤s≤t

f(xs)− min
x∈Rd

f(x) ≥ 3β‖x1 − x∗‖22
32(t+ 1)2

.

6

Theorem 12.9 (See [Bub15]). There exists a β-smooth and α-strongly convex fuction f : Rd → R
with respect to the `2-norm for some β ≥ α > 0 such that xt with t ≥ 1 generated by any oracle-based
algorithm satisfies the following:

f(xt)− min
x∈Rd

f(x) ≥ α

2

(√
κ− 1√
κ+ 1

)2(t−1)
‖x1 − x∗‖22.

References

[Bub15] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Found. Trends
Mach. Learn., 8(3–4):231–357, 2015. 4, 12.7, 12.8, 12.9

[FW56] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval
Research Logistics Quarterly, 3(1-2):95–110, 1956. 3

[Nes03] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2003. 4

[NY83] Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and
method efficiency in optimization. 1983. 4

7

	Outline
	Projected gradient descent
	Conditional gradient method
	Lower bounds on the iteration complexity of gradient methods

