Lecture \#11: Smooth functions that are strongly convex

1 Outline

In this lecture, we study

- More properties of smooth and strongly convex functions,
- Convergence of gradient descent for functions that are smooth and strongly convex.

1.1 More properties of smooth and strongly convex functions

Another interesting result is that when f is smooth, we can measure the gap between the optimal value and $f(x)$ for any given solution x. More precisely, we prove the following result.

Theorem 11.1. If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is β-smooth with respect to the ℓ_{2} norm, then

$$
\frac{1}{2 \beta}\|\nabla f(x)\|_{2}^{2} \leq f(x)-f\left(x^{*}\right) \leq \frac{\beta}{2}\left\|x-x^{*}\right\|_{2}^{2} \quad \forall x \in \mathbb{R}^{d}
$$

where x^{*} is an optimal solution to $\min _{x \in \mathbb{R}^{d}} f(x)$.
Proof. Let us prove the upper bound on $f(x)-f\left(x^{*}\right)$ first. As f is β-smooth, we have

$$
f(x) \leq f\left(x^{*}\right)+\nabla f\left(x^{*}\right)^{\top}\left(x-x^{*}\right)+\frac{\beta}{2}\left\|x-x^{*}\right\|_{2}^{2},
$$

which implies the upper bound as $\nabla f\left(x^{*}\right)=0$. For the lower bound, note that for any $y \in \mathbb{R}^{d}$,

$$
f\left(x^{*}\right) \leq f(y) \leq f(x)+\nabla f(x)^{\top}(y-x)+\frac{\beta}{2}\|y-x\|_{2}^{2} .
$$

Here, we can take $y=x-(1 / \beta) \nabla f(x)$, which makes the right-most side

$$
f(x)-\frac{1}{2 \beta}\|\nabla f(x)\|_{2}^{2} .
$$

Then it follows that

$$
f\left(x^{*}\right) \leq f(x)-\frac{1}{2 \beta}\|\nabla f(x)\|_{2}^{2},
$$

as required.
Based on Theorem 11.1, we can prove the following property of smooth functions.
Lemma 11.2. If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is β-smooth with respect to the ℓ_{2} norm, then

$$
(\nabla f(x)-\nabla f(y))^{\top}(x-y) \geq \frac{1}{\beta}\|\nabla f(x)-\nabla f(y)\|_{2}^{2}
$$

for any $x, y \in \mathbb{R}^{d}$.

Proof. Given $x, y \in \mathbb{R}^{d}$, we take the following two functions.

$$
\begin{aligned}
& g(z)=f(z)-\nabla f(x)^{\top} z \\
& h(z)=f(z)-\nabla f(y)^{\top} z
\end{aligned}
$$

As $\nabla g(z)=\nabla f(z)-\nabla f(x)$ and $\nabla h(z)=\nabla f(z)-\nabla f(y)$, it follows that x and y minimize g and h, respectively. Moreover, g and h are both β-smooth. Note that

$$
\begin{aligned}
f(y)-f(x)-\nabla f(x)^{\top}(y-x) & =g(y)-g(x) \\
& \geq \frac{1}{2 \beta}\|\nabla g(y)\|_{2}^{2} \\
& =\frac{1}{2 \beta}\|\nabla f(y)-\nabla f(x)\|_{2}^{2} .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
f(x)-f(y)-\nabla f(y)^{\top}(x-y) & =h(x)-h(y) \\
& \geq \frac{1}{2 \beta}\|\nabla h(x)\|_{2}^{2} \\
& =\frac{1}{2 \beta}\|\nabla f(x)-\nabla f(y)\|_{2}^{2} .
\end{aligned}
$$

Adding these two inequalities, we obtain

$$
(\nabla f(x)-\nabla f(y))^{\top}(x-y) \geq \frac{1}{\beta}\|\nabla f(x)-\nabla f(y)\|_{2}^{2},
$$

as required.
Recall that Theorem 11.1 measures the optimality gap of any given solution x for a smooth function. We can provide a similar result for bounding the optimality gap for strongly convex functions.
Theorem 11.3. If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is α-strongly convex with respect to the ℓ_{2} norm, then

$$
\frac{\alpha}{2}\left\|x-x^{*}\right\|_{2}^{2} \leq f(x)-f\left(x^{*}\right) \leq \frac{1}{2 \alpha}\|\nabla f(x)\|_{2}^{2} \quad \forall x \in \mathbb{R}^{d}
$$

where x^{*} is an optimal solution to $\min _{x \in \mathbb{R}^{d}} f(x)$.
Proof. Let us prove the lower bound on $f(x)-f\left(x^{*}\right)$ first. As f is α-strongly convex, we have

$$
f(x) \geq f\left(x^{*}\right)+\nabla f\left(x^{*}\right)^{\top}\left(x-x^{*}\right)+\frac{\alpha}{2}\left\|x-x^{*}\right\|_{2}^{2},
$$

which implies the lower bound as $\nabla f\left(x^{*}\right)=0$. For the upper bound, note that

$$
\begin{aligned}
f\left(x^{*}\right) & \geq f(x)+\nabla f(x)^{\top}\left(x^{*}-x\right)+\frac{\alpha}{2}\left\|x^{*}-x\right\|_{2}^{2} \\
& \geq \min _{y \in \mathbb{R}^{d}} f(x)+\nabla f(x)^{\top}(y-x)+\frac{\alpha}{2}\|y-x\|_{2}^{2} .
\end{aligned}
$$

The minimization term above is minimized when y satisfies $\nabla f(x)+\alpha(y-x)=0$, which is equivalent to $y=x-(1 / \alpha) \nabla f(x)$. Therefore,

$$
f\left(x^{*}\right) \geq f(x)-\frac{1}{2 \alpha}\|\nabla f(x)\|_{2}^{2}
$$

as required.

Lastly, we show the following result for strongly convex functions, which holds because the monotonicity condition for $f(x)-(\alpha / 2)\|x\|_{2}^{2}$.
Lemma 11.4. If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is α-strongly convex with respect to the ℓ_{2} norm, then

$$
(\nabla f(x)-\nabla f(y))^{\top}(x-y) \geq \alpha\|x-y\|_{2}^{2}
$$

for any $x, y \in \mathbb{R}^{d}$.
Proof. As $g(x)=f(x)-(\alpha / 2)\|x\|_{2}^{2}$ is convex, the monotonicity of the gradient of g implies that

$$
(\nabla g(x)-\nabla g(y))^{\top}(x-y) \geq 0
$$

for any $x, y \in \mathbb{R}^{d}$. Note that $\nabla g(x)=\nabla f(x)-\alpha x$ and $\nabla g(y)=\nabla f(y)-\alpha y$, which implies that

$$
(\nabla g(x)-\nabla g(y))^{\top}(x-y)=(\nabla f(x)-\nabla f(y))^{\top}(x-y)-\alpha\|x-y\|_{2}^{2} .
$$

Then we obtain $(\nabla f(x)-\nabla f(y))^{\top}(x-y) \geq \alpha\|x-y\|_{2}^{2}$, as required.

1.2 Convergence result for smooth and strongly convex functions

When f is both smooth and strongly convex, f satisfies the following property.
Lemma 11.5. If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is β-smooth with respect to the ℓ_{2} norm and $\beta \geq \alpha$, then $f(x)-$ $(\alpha / 2)\|x\|_{2}^{2}$ is $(\beta-\alpha)$-smooth.
Proof. We learned from the previous lecture that $f(x)-(\alpha / 2)\|x\|_{2}^{2}$ is $(\beta-\alpha)$-smooth if and only if

$$
\frac{\beta-\alpha}{2}\|x\|_{2}^{2}-\left(f(x)-\frac{\alpha}{2}\|x\|_{2}^{2}\right)=\frac{\beta}{2}\|x\|_{2}^{2}-f(x)
$$

is convex. Then, again, $(\beta / 2)\|x\|_{2}^{2}-f(x)$ is convex if and only if f is β-smooth. Since f is β-smooth, it follows that $f(x)-(\alpha / 2)\|x\|_{2}^{2}$ is $(\beta-\alpha)$-smooth, as required.

Based on Lemma 11.5, we can prove the following result on functions that are both smooth and strongly convex.
Lemma 11.6. If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is β-smooth and α-strongly convex with respect to the ℓ_{2} norm, then

$$
(\nabla f(x)-\nabla f(y))^{\top}(x-y) \geq \frac{1}{\beta+\alpha}\|\nabla f(x)-\nabla f(y)\|_{2}^{2}+\frac{\alpha \beta}{\beta+\alpha}\|x-y\|_{2}^{2}
$$

for any $x, y \in \mathbb{R}^{d}$.
Proof. Since f is α-strongly convex, $f(x)-(\alpha / 2)\|x\|_{2}^{2}$ is convex. Moreover, $f(x)-(\alpha / 2)\|x\|_{2}^{2}$ is ($\beta-\alpha$)-smooth by Lemma 11.5. Applying Lemma 11.2 to $f(x)-(\alpha / 2)\|x\|_{2}^{2}$, it follows that

$$
\begin{aligned}
& (\nabla f(x)-\nabla f(y))^{\top}(x-y)-\alpha\|x-y\|_{2}^{2} \\
& \geq \frac{1}{\beta-\alpha}\|\nabla f(x)-\nabla f(y)\|_{2}^{2}-\frac{2 \alpha}{\beta-\alpha}(\nabla f(x)-\nabla f(y))^{\top}(x-y)+\frac{\alpha^{2}}{\beta-\alpha}\|x-y\|_{2}^{2} .
\end{aligned}
$$

This implies that

$$
(\nabla f(x)-\nabla f(y))^{\top}(x-y) \geq \frac{1}{\beta+\alpha}\|\nabla f(x)-\nabla f(y)\|_{2}^{2}+\frac{\alpha \beta}{\beta+\alpha}\|x-y\|_{2}^{2}
$$

as required.

Obseve that Lemma 11.6 is a combination of Lemma 11.2 for smooth functions and Lemma 11.4 for strongly convex functions. This strong peroperty of functions that are both smooth and strongly convex leads to a linear convergence of gradient descent.

Theorem 11.7. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be β-smooth and α-strongly convex, and let $\left\{x_{t}: t=1, \ldots, T+1\right\}$ be the sequence of iterates generated by gradient descent with sep size $\eta_{t}=2 /(\alpha+\beta)$ for each t. Then

$$
f\left(x_{T+1}\right)-f\left(x^{*}\right) \leq \frac{\beta}{2} \exp \left(-\frac{4 T}{\kappa+1}\right)\left\|x_{1}-x^{*}\right\|_{2}^{2}
$$

where x^{*} is an optimal solution to $\min _{x \in \mathbb{R}^{d}} f(x)$.
Proof. Let $\eta_{t}=\eta$ for each $t \geq 1$. Note that

$$
\begin{aligned}
\left\|x_{t+1}-x^{*}\right\|_{2}^{2} & =\left\|x_{t}-\eta \nabla f\left(x_{t}\right)-x^{*}\right\|_{2}^{2} \\
& =\left\|x_{t}-x^{*}\right\|_{2}^{2}-2 \eta \nabla f\left(x_{t}\right)^{\top}\left(x_{t}-x^{*}\right)+\eta^{2}\left\|\nabla f\left(x_{t}\right)\right\|_{2}^{2} \\
& \leq\left\|x_{t}-x^{*}\right\|_{2}^{2}-\frac{2 \eta}{\alpha+\beta}\left\|\nabla f\left(x_{t}\right)\right\|_{2}^{2}-\frac{2 \eta \alpha \beta}{\alpha+\beta}\left\|x_{t}-x^{*}\right\|_{2}^{2}+\eta^{2}\left\|\nabla f\left(x_{t}\right)\right\|_{2}^{2} \\
& =\left(1-\frac{2 \eta \alpha \beta}{\alpha+\beta}\right)\left\|x_{t}-x^{*}\right\|_{2}^{2}+\left(\eta^{2}-\frac{2 \eta}{\alpha+\beta}\right)\left\|\nabla f\left(x_{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

where the inequality follows from Lemma 11.6. Setting $\eta=2 /(\alpha+\beta)$, we obtain

$$
\left\|x_{t+1}-x^{*}\right\|_{2}^{2} \leq\left(\frac{\beta-\alpha}{\beta+\alpha}\right)^{2}\left\|x_{t}-x^{*}\right\|_{2}^{2}=\left(\frac{\kappa-1}{\kappa+1}\right)^{2}\left\|x_{t}-x^{*}\right\|_{2}^{2}
$$

which implies that

$$
\left\|x_{t+1}-x^{*}\right\|_{2} \leq\left(\frac{\kappa-1}{\kappa+1}\right)\left\|x_{t}-x^{*}\right\|_{2} \leq\left(\frac{\kappa-1}{\kappa+1}\right)^{t}\left\|x_{1}-x^{*}\right\|_{2} .
$$

Since f is β-smooth, we have

$$
f\left(x_{t+1}\right)-f\left(x^{*}\right) \leq \frac{\beta}{2}\left\|x_{t+1}-x^{*}\right\|_{2}^{2} \leq \frac{\beta}{2}\left(\frac{\kappa-1}{\kappa+1}\right)^{2 t}\left\|x_{1}-x^{*}\right\|_{2}^{2}
$$

Lastly,

$$
\left(\frac{\kappa-1}{\kappa+1}\right)^{2 t}=\left(1-\frac{2}{\kappa+1}\right)^{2 t} \leq \exp \left(-\frac{4 t}{\kappa+1}\right)
$$

as required.

