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1 Outline

In this lecture, we study

• More properties of smooth and strongly convex functions,

• Convergence of gradient descent for functions that are smooth and strongly convex.

1.1 More properties of smooth and strongly convex functions

Another interesting result is that when f is smooth, we can measure the gap between the optimal
value and f(x) for any given solution x. More precisely, we prove the following result.

Theorem 11.1. If f : Rd → R is β-smooth with respect to the ℓ2 norm, then

1

2β
∥∇f(x)∥22 ≤ f(x)− f(x∗) ≤ β

2
∥x− x∗∥22 ∀x ∈ Rd

where x∗ is an optimal solution to minx∈Rd f(x).

Proof. Let us prove the upper bound on f(x)− f(x∗) first. As f is β-smooth, we have

f(x) ≤ f(x∗) +∇f(x∗)⊤(x− x∗) +
β

2
∥x− x∗∥22,

which implies the upper bound as ∇f(x∗) = 0. For the lower bound, note that for any y ∈ Rd,

f(x∗) ≤ f(y) ≤ f(x) +∇f(x)⊤(y − x) +
β

2
∥y − x∥22.

Here, we can take y = x− (1/β)∇f(x), which makes the right-most side

f(x)− 1

2β
∥∇f(x)∥22.

Then it follows that

f(x∗) ≤ f(x)− 1

2β
∥∇f(x)∥22,

as required.

Based on Theorem 11.1, we can prove the following property of smooth functions.

Lemma 11.2. If f : Rd → R is β-smooth with respect to the ℓ2 norm, then

(∇f(x)−∇f(y))⊤(x− y) ≥ 1

β
∥∇f(x)−∇f(y)∥22

for any x, y ∈ Rd.
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Proof. Given x, y ∈ Rd, we take the following two functions.

g(z) = f(z)−∇f(x)⊤z,

h(z) = f(z)−∇f(y)⊤z.

As ∇g(z) = ∇f(z)−∇f(x) and ∇h(z) = ∇f(z)−∇f(y), it follows that x and y minimize g and
h, respectively. Moreover, g and h are both β-smooth. Note that

f(y)− f(x)−∇f(x)⊤(y − x) = g(y)− g(x)

≥ 1

2β
∥∇g(y)∥22

=
1

2β
∥∇f(y)−∇f(x)∥22.

Similarly, we have

f(x)− f(y)−∇f(y)⊤(x− y) = h(x)− h(y)

≥ 1

2β
∥∇h(x)∥22

=
1

2β
∥∇f(x)−∇f(y)∥22.

Adding these two inequalities, we obtain

(∇f(x)−∇f(y))⊤(x− y) ≥ 1

β
∥∇f(x)−∇f(y)∥22,

as required.

Recall that Theorem 11.1 measures the optimality gap of any given solution x for a smooth function.
We can provide a similar result for bounding the optimality gap for strongly convex functions.

Theorem 11.3. If f : Rd → R is α-strongly convex with respect to the ℓ2 norm, then

α

2
∥x− x∗∥22 ≤ f(x)− f(x∗) ≤ 1

2α
∥∇f(x)∥22 ∀x ∈ Rd

where x∗ is an optimal solution to minx∈Rd f(x).

Proof. Let us prove the lower bound on f(x)− f(x∗) first. As f is α-strongly convex, we have

f(x) ≥ f(x∗) +∇f(x∗)⊤(x− x∗) +
α

2
∥x− x∗∥22,

which implies the lower bound as ∇f(x∗) = 0. For the upper bound, note that

f(x∗) ≥ f(x) +∇f(x)⊤(x∗ − x) +
α

2
∥x∗ − x∥22

≥ min
y∈Rd

f(x) +∇f(x)⊤(y − x) +
α

2
∥y − x∥22.

The minimization term above is minimized when y satisfies∇f(x)+α(y−x) = 0, which is equivalent
to y = x− (1/α)∇f(x). Therefore,

f(x∗) ≥ f(x)− 1

2α
∥∇f(x)∥22,

as required.
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Lastly, we show the following result for strongly convex functions, which holds because the mono-
tonicity condition for f(x)− (α/2)∥x∥22.

Lemma 11.4. If f : Rd → R is α-strongly convex with respect to the ℓ2 norm, then

(∇f(x)−∇f(y))⊤(x− y) ≥ α∥x− y∥22

for any x, y ∈ Rd.

Proof. As g(x) = f(x)− (α/2)∥x∥22 is convex, the monotonicity of the gradient of g implies that

(∇g(x)−∇g(y))⊤(x− y) ≥ 0

for any x, y ∈ Rd. Note that ∇g(x) = ∇f(x)− αx and ∇g(y) = ∇f(y)− αy, which implies that

(∇g(x)−∇g(y))⊤(x− y) = (∇f(x)−∇f(y))⊤(x− y)− α∥x− y∥22.

Then we obtain (∇f(x)−∇f(y))⊤(x− y) ≥ α∥x− y∥22, as required.

1.2 Convergence result for smooth and strongly convex functions

When f is both smooth and strongly convex, f satisfies the following property.

Lemma 11.5. If f : Rd → R is β-smooth with respect to the ℓ2 norm and β ≥ α, then f(x) −
(α/2)∥x∥22 is (β − α)-smooth.

Proof. We learned from the previous lecture that f(x)− (α/2)∥x∥22 is (β−α)-smooth if and only if

β − α

2
∥x∥22 −

(
f(x)− α

2
∥x∥22

)
=

β

2
∥x∥22 − f(x)

is convex. Then, again, (β/2)∥x∥22−f(x) is convex if and only if f is β-smooth. Since f is β-smooth,
it follows that f(x)− (α/2)∥x∥22 is (β − α)-smooth, as required.

Based on Lemma 11.5, we can prove the following result on functions that are both smooth and
strongly convex.

Lemma 11.6. If f : Rd → R is β-smooth and α-strongly convex with respect to the ℓ2 norm, then

(∇f(x)−∇f(y))⊤ (x− y) ≥ 1

β + α
∥∇f(x)−∇f(y)∥22 +

αβ

β + α
∥x− y∥22

for any x, y ∈ Rd.

Proof. Since f is α-strongly convex, f(x) − (α/2)∥x∥22 is convex. Moreover, f(x) − (α/2)∥x∥22 is
(β − α)-smooth by Lemma 11.5. Applying Lemma 11.2 to f(x)− (α/2)∥x∥22, it follows that

(∇f(x)−∇f(y))⊤ (x− y)− α∥x− y∥22

≥ 1

β − α
∥∇f(x)−∇f(y)∥22 −

2α

β − α
(∇f(x)−∇f(y))⊤ (x− y) +

α2

β − α
∥x− y∥22.

This implies that

(∇f(x)−∇f(y))⊤ (x− y) ≥ 1

β + α
∥∇f(x)−∇f(y)∥22 +

αβ

β + α
∥x− y∥22,

as required.
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Obseve that Lemma 11.6 is a combination of Lemma 11.2 for smooth functions and Lemma 11.4 for
strongly convex functions. This strong peroperty of functions that are both smooth and strongly
convex leads to a linear convergence of gradient descent.

Theorem 11.7. Let f : Rd → R be β-smooth and α-strongly convex, and let {xt : t = 1, . . . , T +1}
be the sequence of iterates generated by gradient descent with sep size ηt = 2/(α + β) for each t.
Then

f(xT+1)− f(x∗) ≤ β

2
exp

(
− 4T

κ+ 1

)
∥x1 − x∗∥22

where x∗ is an optimal solution to minx∈Rd f(x).

Proof. Let ηt = η for each t ≥ 1. Note that

∥xt+1 − x∗∥22 = ∥xt − η∇f(xt)− x∗∥22
= ∥xt − x∗∥22 − 2η∇f(xt)

⊤(xt − x∗) + η2∥∇f(xt)∥22

≤ ∥xt − x∗∥22 −
2η

α+ β
∥∇f(xt)∥22 −

2ηαβ

α+ β
∥xt − x∗∥22 + η2∥∇f(xt)∥22

=

(
1− 2ηαβ

α+ β

)
∥xt − x∗∥22 +

(
η2 − 2η

α+ β

)
∥∇f(xt)∥22

where the inequality follows from Lemma 11.6. Setting η = 2/(α+ β), we obtain

∥xt+1 − x∗∥22 ≤
(
β − α

β + α

)2

∥xt − x∗∥22 =
(
κ− 1

κ+ 1

)2

∥xt − x∗∥22,

which implies that

∥xt+1 − x∗∥2 ≤
(
κ− 1

κ+ 1

)
∥xt − x∗∥2 ≤

(
κ− 1

κ+ 1

)t

∥x1 − x∗∥2.

Since f is β-smooth, we have

f(xt+1)− f(x∗) ≤ β

2
∥xt+1 − x∗∥22 ≤

β

2

(
κ− 1

κ+ 1

)2t

∥x1 − x∗∥22.

Lastly, (
κ− 1

κ+ 1

)2t

=

(
1− 2

κ+ 1

)2t

≤ exp

(
− 4t

κ+ 1

)
,

as required.
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