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1 Outline

In this lecture, we study

• Properties of smooth functions and strongly convex functions,

• Convergence of gradient descent for smooth functions.

2 Gradient descent for smooth and strongly convex functions

2.1 Smooth functions and strongly convex functions

We say that a differentiable function f : Rd → R is β-smooth with respect to the ℓ2 norm form
some β > 0 if

∥∇f(x)−∇f(y)||2 ≤ β∥x− y∥2
holds for any x, y ∈ Rd. Smooth functions have the self-tuning property! By the optimality
condition (for unconstrained problmes), we have ∇f(x∗) = 0 for any optimal solution x∗. Then
the smoothness assumption implies that the gradient gets close to 0 as we approach an optimal
solution. This is in contrast to a non-differentiable function, e.g., f(x) = |x| over R.

Figure 10.1: Smooth functions vs non-smooth functions

Recall that the subgradient method requires a constant but small step size ≈ O(1/
√
T ) where T

is the total number of iterations. This is partly because the subgradient does not get smaller even
we converge to an optimal solution. In contrast, for smooth functions, we can take large step sizes,
because the gradient gets reduced as we converge to an optimal solution. This is referred to as the
self-tuning property.

Theorem 10.1. A function f : Rd → R is β-smooth with respect to the ℓ2 norm for some β > 0 if
and only if g(x) = (β/2)∥x∥22 − f(x) is convex.

Proof. (⇒) Recall that g is convex if and only if the monotonicity condition is satisfied. Note that
∇g(x) = βx−∇f(x) and

⟨∇g(x)−∇g(y), x− y⟩ = β∥x− y∥2 − ⟨∇f(x)−∇f(y), x− y⟩.

Then by the Cauchy-Schwarz inequality,

⟨∇f(x)−∇f(y), x− y⟩ ≤ ∥∇f(x)−∇f(y)∥2 · ∥x− y∥2 ≤ β∥x− y∥22.
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Therefore, we have ⟨∇g(x)−∇g(y), x− y⟩ ≥ 0, which implies that g is convex.

(⇐) Since g is convex, the first-order characterization of convex functions states that

β

2
∥z∥22 − f(z) ≥ β

2
∥x∥22 − f(x) + (βx−∇f(x))⊤(z − x) for any z ∈ Rd,

which is equivalent to

f(z) ≤ f(x) +∇f(x)⊤(z − x) +
β

2
∥z − x∥22 for any z ∈ Rd.

Then taking z = y + (1/β)(∇f(x)−∇f(y)),

f(x)− f(y) = f(x)− f(z) + f(z)− f(y)

≤ −∇f(x)⊤(z − x) +∇f(y)⊤(z − y) +
β

2
∥z − y∥22

= ∇f(x)⊤(x− y) + (∇f(x)−∇f(y))⊤(y − z) +
β

2
∥z − y∥22

= ∇f(x)⊤(x− y)− 1

2β
∥∇f(x)−∇f(y)∥22.

Then it follows that

1

2β
∥∇f(x)−∇f(y)∥22 ≤ f(y)− f(x) +∇f(x)⊤(x− y).

Similarly, we obtain

1

2β
∥∇f(y)−∇f(x)∥22 ≤ f(x)− f(y) +∇f(y)⊤(y − x).

Adding these two inequalities, it follows that

1

β
∥∇f(x)−∇f(y)∥22 ≤ (∇f(x)−∇f(y))⊤(x− y).

Since (∇f(x)−∇f(y))⊤(x− y) ≤ ∥∇f(x)−∇f(y)∥2 · ∥x− y∥2 by the Cauchy-Schwarz inequality,
we obtain

∥∇f(x)−∇f(y)∥2 ≤ β∥x− y∥2.

Therefore, f is β-smooth.

By the first-order characterization of convex functions, g(x) = β
2 ∥x∥

2
2 − f(x) is convex if and only

if g(y) ≥ g(x) +∇g(x)⊤(y − x) for any x, y ∈ Rd. This condition is equivalent to

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
β

2
∥y − x∥22.

This basically means that a smooth function can be upper bounded by a quadratic function.

In fact, we can prove a stronger statement given as follows.

Lemma 10.2. If f is β-smooth with respect to the ℓ2 norm, then∣∣∣f(y)− f(x)−∇f(x)⊤(y − x)
∣∣∣ ≤ β

2
∥y − x∥2.
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Figure 10.2: Quadratic upper bound on a smooth function

Proof. By the fundamental theorem of calculus and the Cauchy-Schwarz inequality, we obtain the
following. ∣∣∣f(y)− f(x)−∇f(x)⊤(y − x)

∣∣∣ = ∣∣∣∣∫ 1

0
(y − x)⊤ (∇f(x+ t(y − x))−∇f(x)) dt

∣∣∣∣
≤
∫ 1

0
∥y − x∥2 ∥∇f(x+ t(y − x))−∇f(x)∥2 dt

≤
∫ 1

0
βt∥y − x∥22dt

=
β

2
∥y − x∥22

where the equality is due to the fundamental theorem of calculus, the first inequality is by the
Cauchy-Schwarz inequality, and the second inequality is from the β-smoothness of f .

Example 10.3. Quadratic functions x⊤Qx/2 + p⊤x+ r.

Recall that a function f is α-strongly convex in the norm ∥ · ∥2 for some α > 0 if f(x) − α
2 ∥x∥

2
2

is convex. Why is strong-convexity useful? Let us first derive the following property of strongly
convex functions.

Lemma 10.4. If f is α-strongly convex with respect to the ℓ2 norm, then

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
α

2
∥y − x∥22.

Proof. By definition, we have that g(x) = f(x) − α
2 ∥x∥

2
2 is convex. Then by the first-order char-

acterization of convex functions, we have g(y) ≥ g(x) +∇g(x)⊤(y − x) for any x, y ∈ Rd. This is
equivalent to

f(y) ≥ f(x) + (∇f(x)− αx)⊤(y − x)− α

2
∥x∥22 +

α

2
∥y∥22

= f(x) +∇f(x)⊤(y − x) +
α

2
∥y − x∥22,

as required.

Lemma 10.4 implies that a strongly convex function is lower bounded by a quadratic function.
This means that, when a point is far from an optimal solution, the gradient at this point has to
be large. Hence, when applying gradient descent or the subgradient method, this leads to a faster
convergence.

In Figure 10.4, we compare smoothness and strong convexity. The first figure shows a strongly
convex function that is not smooth, obtained by taking the point-wise maximum of two smooth
functions. The second figure illustrates a smooth function that is not strongly convex. In particular,
the second figure shows a smooth curve around the minimum point while it exhibits a linear growth
when being far away from the minimum point.
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Figure 10.3: Quadratic lower bound on a strongly convex function

Figure 10.4: Strongly convex but non-smooth function vs smooth function that is not strongly
convex

2.2 Convergence result for smooth functions

Next we prove the convergence result for smooth function. The first thing we observe is that a
gradient step for a smooth function can always guarantee a strict improvement. To explain this,
take a differentiable and β-smooth function f : Rd → R. Then a gradient step is given by

xt+1 = xt − ηt∇f(xt).

Note that

f(xt+1) ≤ f(xt) +∇f(xt)
⊤(xt+1 − xt) +

β

2
∥xt+1 − xt∥22

= f(xt) +

(
−ηt +

η2t β

2

)
∥∇f(xt)∥22

≤ f(xt)−
1

2β
∥∇f(xt)∥22

where the first inequality follows from the β-smoothness of f and the second inequality is because
the term inside the parenthesis is a quadratic function in ηt which can be maximized at ηt = 1/β.
Therefore, when ηt = 1/β, we obtain

f(xt+1) ≤ f(xt)−
1

2β
∥∇f(xt)∥22,

which implies that f(xt+1) is strictly better than f(xt) when xt is not an optimal solution. Based
on this observation, we can prove the following convergence result for smooth functions.
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Theorem 10.5. Let f : Rd → R be β-smooth, and let {xt : t = 1, . . . , T + 1} be the sequence of
iterates generated by gradient descent with step size ηt = 1/β for each t. Then

f(xT+1)− f(x∗) ≤ β∥x1 − x∗∥22
2T

where x∗ is an optimal solution to minx∈Rd f(x).

Proof. Note that

f(xt+1) ≤ f(xt)−
1

2β
∥∇f(xt)∥22

≤ f(x∗)−∇f(xt)
⊤(x∗ − xt)−

1

2β
∥∇f(xt)∥22

= f(x∗) +
β

2

(
∥xt − x∗∥22 − ∥xt+1 − x∗∥22

)
where the second inequality is because f(xt) + ∇f(xt)

⊤(x − xt) is a lower bound on f and the
equality follows because xt+1 = xt − (1/β)∇f(xt). This implies that

f(xt+1)− f(x∗) ≤ β

2

(
∥xt − x∗∥22 − ∥xt+1 − x∗∥22

)
,

summing which over t = 1, . . . , T and dividing the resulting one by T , we obtain

1

T

T∑
t=1

f(xt+1)− f(x∗) ≤ β

2T

(
∥x1 − x∗∥22 − ∥xT+1 − x∗∥22

)
≤ β

2T
∥x1 − x∗∥22.

Recall that each gradient step for smooth functions leads to an improvement, i.e., f(xt+1) ≤ f(xt).
Therefore,

f(xT+1)− f(x∗) ≤ 1

T

T∑
t=1

f(xt+1)− f(x∗) ≤ β

2T
∥x1 − x∗∥22,

as required.

The important takeaway is that we took a constant step size 1/β, which does not depend on the
number of iterations T . This is due to the self-tuning property of smooth functions. Although we
do not shrink the step size, the change between the current iterate xt and the next iterate xt+1 gets
reduced as we approach an optimal solution.

As discussed before, the term ∥x1 − x∗∥2 and the smoothness parameter β are all fixed constants.
Hence, the convergence rate is O(1/T ). Therefore, after T = O(1/ϵ) iterations, we have

f(xT+1)− f(x∗) ≤ ϵ.

Note that the convergence results for smooth functions improves over O(1/
√
T ) and O(1/ϵ2) for the

subgradient method. Moreover, let us compare the last steps of their analyses. For the subgradient
method, we had

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ 1

T

T∑
t=1

f(xt)− f(x∗) ≤ ∥x1 − x∗∥22
2ηT

+
η

2
L2,
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whereas the last step for smooth functions was that

f(xT+1)− f(x∗) ≤ 1

T

T∑
t=1

f(xt+1)− f(x∗) ≤ ∥x1 − x∗∥22
2ηT

.

These are almost the same, but for smooth functions, we did not have the additional term ηL2/2
on the right-hand side. Moreover, we used the fact that each gradient step improves the objective.
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