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What is “Optimization”?

Portfolio optimization

B Given d financial assets (stocks, bonds, etc),

Iﬁ we want to allocate x; fraction of our budget to
Jp— & asset i that has return p; while o is the

b w covariance of assets i and j.

o e

Goal: find a portfolio (allocation) maximizing return while minimizing risk
(measured as a function of the covariance).



What is “Optimization”?

Facility location

Solution summary [
Scare: Ohard 140865450t
Towlcost:  $359,417.0

©33%)
Total 157km
distance:
© Failty st
Name  Usage Setupcost
 Facilty ¢ 436K
W Feciy 11 $46.0
& Facilty 15 434K
B Feciiy 19 455K
W Feciiy2? 331K
@ Facilty 24 €2 432K
@ Facilly 29 [ $618K

Goal: build a “fire station” covering all households while minimizing the
longest distance to a household.
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What is “Optimization”?

Support vector machine

o
([ ] A Given n data (x1, y1), ..., (Xn, yn) where
: yi € {—1,1} are labels, we want to find a
separating hyperplane
A
T
O AA w x=b
A
o A to classify data with +1 and data with —1.
A

Goal: find a separating hyperplane w'x = b with the “gap” (1/||w||) being
maximized.



What is “Optimization”?

Linear regression

Based on n data points (x1,y1), ..., (Xn, Ya), We
want to find a linear rule
-
y=»8 x
that best represents the relationship between x
and y.

Goal: we want to find 8 minimizing the “mean squared error”, given by

- Z(yl ﬁ XI



Who is Dabeen?

At KAIST since July 2022...
Office: E2-2 #2109

Email: dabeenl@kaist.ac.kr
Office hours: Wed 2:00 - 4:00 pm

Research interests:

® Optimization (mainly discrete and
stochastic, but some works on continuous),

® Algorithms (for combinatorial and
continuous problems),

. ® -+ Machine learning, Quantum computing.
The door is open to anyone!



About this course

The following is a tentative list of topics covered in this course.

Theory Algorithms Applications
Convex Analysis Gradient Descent (GD) Machine Learning (SVM,
(sets, functions LASSO, Ridge Regression,

_ ' Proximal and Projected GD etc.)

operations)
Optimality Mirror Descent Statistics (Uncertainty
Conditions Proximal Point Algorithm and Quantification, Inverse

. i lecti
Semidefinite Augmented Lagrangian Method Covariance Selection)

Programming  Operator Splitting and ADMM Operations Research
) (Advertisement Allocation,
QuadratlF Newton’s method and Quasi Facility Location, Portfolio
Programming Newton methods Optimization)

® Many more applications will be discussed on the way.

® \We might also cover other algorithms such as Online GD, Stochastic GD,
Frank-Wolfe, and Interior Point Methods.



Logistics

Class times: Tuesday and Thursday 4:00 - 5:30 pm.

Assessment (typesetting in Latex is required for all submissions):
® 6-7 biweekly assignments (50%)
® Course project (20%)
® Take-home final (30%)

Assignments: Being comfortable with making mathematical arguments, writing
proofs and programming is required throughout this course.

Project: (1) Choose a problem (possibly from your own reseaarch) that admits
a (non)convex optimization formulation, (2) Propose solution methods, and (3)
Test candidate algorithms. (Details will be announced soon)



Objectives

We formulate a decision-making problem as an optimization model

P : g”ggf(x).

Then

® We have to study the structure of the problem, f and D.

- Is P convex? a linear program (LP)? a quadratic program (QP)? a
semidefinite program (SDP)?

- Is f smooth? strongly convex? both?

- Is D convex? an affine subspace?

® We have to figure out and test candidate algorithms for solving P.
- Gradient Descent, simply? Proximal Gradient Descent? Newton's method?

For this task, we need comprehensive knowledge in convex optimization.

Later, this knowledge will help you create a new optimization problem.



Example

Consider

min  f(x) +g(y)
st. Ax+By=c

where f, g are convex and A, B, ¢ are matrices of appropriate dimension.

How do we solve the problem?
® If f and g are both strongly convex, then Gradient Ascent in the dual.
® If only f is strongly convex while g has an easy Prox, then Proximal
Gradient in the dual.

® If neither f nor g is strongly convex, then Proximal Point Algorithm in the
dual or ADMM.



