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Integer linear programming

Integer linear programming (ILP)

Integer linear programming is an optimization problem of the following form:
min {CTX : Ax> b, x € Z"} (ILP)

where A€ Z™" b€ Z™, and c € Z"

® |f the LP relaxation, min {ch cAx > b, x € R”}, has an integral
optimal solution, then it is an optimal solution to (ILP).

e If the polyhedron {x € R" : Ax > b} is integral, then there is an integral
optimal solution to the LP relaxation.

® If not, we use cutting-plane methods in combination with enumeration
(branch-and-bound) in practice.
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Part | (Chapters 2 — 5): Cutting planes for integer programming

Based on

(1) On the rational polytopes with Chvétal rank 1 with G. Cornuéjols and Y.
Li, Math. Program. A, in press.

(2) On the NP-hardness of deciding emptiness of the split closure of a rational
polytope in the 0,1 hypercube, Discrete Optimization, in press.

(3) On some polytopes contained in the 0,1 hypercube that have a small
Chvatal rank with G. Cornuéjols, Math. Program. B, 2018.

(4) Generalized Chvatal-Gomory closures for integer programs with bounds on
variables with S. Dash and O. Giinliik, to be submitted.



The Chvatal-Gomory cuts

® The Chvatal closure of a rational polyhedron P = {x € R": Ax > b} is
defined as

/ .
P = m x€R": x> [mincy]
eprP
cezZn Y
the Chvatal-Gomory cut

Theorem [Chvatal, 1973, Schrijver, 1980]

Let P be a rational polyhedron, and let P, :== conv(P NZ"). Then
(1) P’ is also a rational polyhedron,
(2) there exists a positive integer k such that P*X) = P;.

® The kth Chvatal closure of P is defined as

PR . ((P1)-..Y
k

® The Chvatal rank of P is the smallest integer k such that P = P;.
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Bounds on the Chvétal rank
® Bounds on the Chviatal rank of a polytope in the 0,1 hypercube:

Theorem [Eisenbrand and Schulz, 2003]
Let P C [0,1]" be a polytope. Then the Chvétal rank of P is O(n? log n).

Theorem [RothvoB and Sanita, 2013]
There exists a polytope P C [0,1]" whose Chvatal rank is Q(n?).

® When does a polytope in the 0,1 hypercube have a small Chvatal rank?

Theorem [Cornuéjols and Lee, 2018] (in Chapter 4)

Let P C[0,1]" be a polytope, and let G, denote the skeleton graph of [0,1]".
Let S :={0,1}"\ P. Then the following statements hold:

@ ifS is a stable set in G,, then the Chvatal rank of P is at most 1,

8 if G,,[§] is a disjoint union of cycles of length greater than 4 and paths,
then the Chvdtal rank of P is at most 2,

e if G,,[§] is a forest, then the Chvatal rank of P is at most 3.
© if G,[S] has tree-width 2, then the Chvdtal rank of P is at most 4.



Bounds on the Chvatal rank

® Motivated by this result,

Theorem [Benchetrit, Fiorini, Huynh, Weltge, 2018]
If the tree-width of G,[S] is t, then the Chvaétal rank of P is at most t + 2t*/2.
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Complexity results

® Complexity results on the optimization over the Chvatal closure:

Theorem [Eisenbrand, 1999]

The separation problem over the Chvatal closure of a rational polyhedron

P ={x € R": Ax > b} is NP-hard.

Theorem [Cornuéjols and Li, 2016]

It is NP-hard to decide whether the Chvatal closure of a rational polyhedron
P ={x €R": Ax > b} is empty, even when P contains no integer point.
Theorem [Cornuéjols, Lee, Li, 2018+] (in Chapter 2)

The separation problem over the Chvatal closure of a rational polyhedron

P ={x € R": Ax > b} is NP-hard, even when P C [0, 1]".

Theorem [Cornuéjols, Lee, Li, 2018+] (in Chapter 2)

It is NP-hard to decide whether the Chvatal closure of a rational polyhedron
P ={x € R": Ax > b} is empty, even when P contains no integer point and
P Co0,1]".
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A generalization of the Chvatal-Gomory cuts

® Given S C Z" and a polyhedron P C conv(S), the S-Chvdtal closure of P
is defined as

Ps := ﬂ x€P: cx>[mincyls,
yepP

cez” | —

the S-Chvatal-Gomory cut

where [minc :=min{cz: cz>mincy, z€ S > [mincy].
miperls.ci=min{ez: ez > mincy. z€ S} > fmipoy]

Theorem [Dash, Giinliik, Lee] (in Chapter 5)

Let ni,na,n3,ns € Z, and let T be a finite subset of Z™. Let
S= {(21,22,23,24) ETXZ?XIL® xZ™: P<2? 22<d’ }

where (> € 7™ and u® € Z"™. If P C conv(S) is a rational polyhedron, then the
S-Chvatal closure of P is a rational polyhedron.

® In particular, when S = {0,1}™ x Z"? x Z"™, Ps is a polyhedron.
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The split cuts

® Split cuts are a generalization of the Chvatal-Gomory cuts.

® The split closure of a rational polyhedron is defined as the set of points
satisfying all split cuts [Cook, Kannan, Schrijver, 1990].

Theorem [Caprara and Letchford, 2003]

The separation problem over the split closure of a rational polyhedron
P ={x€R": Ax > b} is NP-hard.

Theorem [Lee, 2018+] (in Chapter 3)

The separation problem over the split closure of a rational polyhedron
P ={x € R": Ax > b} is NP-hard, even when P C [0, 1]".

Theorem [Lee, 2018+] (in Chapter 3)

It is NP-hard to decide whether the split closure of a rational polyhedron
P ={x € R": Ax > b} is empty, even when P contains no integer point and
P C[0,1]".
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Part Il (Chapters 6 — 9): On the 7 = 2 Conjecture

Based on

(1) Intersecting restrictions in clutters with A. Abdi and G. Cornuéjols,
submitted.

(2) Cuboids, a class of clutters with A. Abdi, G. Cornuéjols, and N.
Guri¢anovad, submitted.

(3) Multipartite clutters with A. Abdi and G. Cornuéjols, in progress.

(4) Ideal vector spaces with A. Abdi and G. Cornuéjols, in progress.



Questions

® When is {x : Ax > b} integral?
When is a linear system Ax > b totally dual integral (TDI)?

® Ax > bis TDI if (D) has an integral optimal solution for every w € Z".
min w ' x max by
(P) st Ax>b (D) st yTA=w'
y=0

® If Ax > bis TDI and b is integral, then {x : Ax > b} is integral [Edmonds
and Giles, 1977].

® \When does the converse hold?

Question

Let M be a 0,1 matrix such that {x : Mx > 1, x > 0} is integral. When is the
system Mx > 1, x > 0 TDI?

® To answer this question, we study combinatorial structures of M, as well
as the geometry of the polyhedron {x: Mx > 1, x > 0}.



Set covering problem

Mx > 1, x > 0 where M € {0,1}"*".
e Let C C 2" be defined as

C:={CC|[n]: xcisarow of M}.

® For example,

111 0 0 O
M=|10 00 0 1 1
11 0 1 10

6] (] (]
¢ =1{{1,2,3},{5,6},{1,2,4,5}}

® We may assume that every inequality in Mx > 1, x > 0 is non-redundant.
® Sets in C are pairwise incomparable.



Set covering problem

Let E be a finite set of elements with nonnegative weights w € RE.

Let C C 2F be a family of subsets of E, called members.

We call C a clutter if the members are pairwise incomparable.

A subset B C E is a cover of C if
BNnC#0 VvVCeC.

The weight of B C E is w(B) := )

The Set Covering Problem is to find a minimum weight cover of C.

ecB

We.

)

For example, E ={1,2,3,4,5,6} and C = {{1,2,3},{5,6},{1,2,4,5}}.

B = {2,5} is a cover.



Ideal clutters and integrality

® Given a clutter C, M(C) denote the member-element incidence matrix of C.

® We say that a clutter C is ideal if
{x: M{C)x >1, x>0}

is integral.
Examples:
® M(C) is totally unimodular.
@ C is the clutter of st-paths in a graph with distinct s, t.

{x e RE : x(P) > 1, Vst-path P}
® C is the clutter of T-cuts of a graph

{xeRi L x(6(C))>1,VCCV:|CNT]| odd}



The MEMC property and total dual integrality

® We say that a clutter C has the max-flow min-cut (MFMC) property if
M{C)x>1, x>0

is total dual integral.
® C has the MFMC property if 7(C, w) = v(C, w) for any w € Z£, where

7(C,w) = min w'x v(Cyw)= max 1y
st. M(C)x>1 st. y"™M(C)<w'
x € Zk y €78

® A clutter with the MFMC property is always ideal [Edmonds and Giles,
1977).



The MEMC property and total dual integrality

® In particular, if C has the MFMC property, then 7(C) = v(C), where
7(C) := 7(C, 1) = min {lTx L M(C)x > 1, x € zi}
v(C) =v(C,1) = max{lTy Cy'M@C)<1T, ye Zi}

® Notice that
7(C) = the minimum size of a cover of C (covering number),

v(C) = the maximum number of disjoint members in C (packing number),
® We say that C packs if 7(C) = v(C).



Ideal clutters without the MFMC property

® However, there is an ideal clutter that does not have the MFMC property.

Qs := {{1,3,5},{1,4,6},{2,3,6},{2,4,5}}

3
1 01010
o 5 1 00 10 1
1 2 M(Q6)_011001
01 01 10

4

® () is ideal.
® 7(Qs) = the minimum # of edges to cover all triangles = 2.
® 1(Qs) = the maximum # of disjoint triangles = 1 — 7(Qs) > v(Qs).

When does an ideal clutter have the MFMC property?



Minors

® We define 2 minor operations with e € E.

©® Contraction C/e := {the minimal sets of {C —e: C € C}}.
Set we to a large number — x. = 0.

@ Deletion C\e:={CeC: e¢ C}.
Set we to 0 — xe = 1.

® A minor of C is what is obtained after a series of contractions and
deletions.
Remark
@ If a clutter is ideal, then so is every minor of it.

@ If a clutter has the MFMC property, then so does every minor of it.

® |n the world of ideal clutters, is there an “excluded-minor characterization”
for clutters with the MFMC property?



The 7 = 2 Conjecture

Let C be a clutter.
® Recall that C packs if 7(C) = v(C), where

7(C) = the minimum size of a cover of C (covering number),

v(C) = the maximum number of disjoint members in C (packing number).

® If C has the MFMC property, as the MFMC property is a minor-closed
property, every minor of C packs.

The Replication Conjecture [Conforti and Cornuéjols, 1993]
If every minor of C packs, then C has the MFMC property.

® We say that C is minimally non-packing if C does not pack but all its
proper minors pack.

The 7 = 2 Conjecture [Cornuéjols, Guenin, Margot, 2000]
If C is ideal and minimally non-packing, then 7(C) = 2.

® The 7 = 2 Conjecture = the Replication Conjecture [Cornuéjols, Guenin,
Margot, 2000].



Chapter 6. Intersecting clutters

® \We say that a clutter C is intersecting if
7(C)>2 and v(C)=1.

® A clutter is intersecting if any two members intersect, but there is no
single common element contained in all members.

® Qs is intersecting, as 7(Qs) = 2 and v(Qs) = 1.

® In fact, the 7 = 2 Conjecture can be equivalently stated as

The 7 = 2 Conjecture (version 2)

Let C be an ideal clutter. Then

C has the MFMC property < C has no intersecting minor.



Deltas

® Deltas

11

1 1

1 1
11 1

A, ={{1,2},{1,3},...,{1,n},{2,3,...,n}}, n>3
® A, denotes the delta of dimension n.
* 7(A,)=2and v(A,) =1.



The blockers of odd holes

® The blockers of odd holes

n—1 3 1 1

C2:={{1,2},{2,3},...,{n—1,n},{n,1}}, n: odd
® (2 denotes the odd hole of dimension n.
® Every vertex cover of C? has > 5 vertices.
® Two vertex covers of C2 always intersect!

® The clutter of minimal vertex covers of C2 is intersecting.



Main result

® Recall that
The 7 = 2 Conjecture (version 2)

Let C be an ideal clutter. Then

C has the MFMC property < C has no intersecting minor.

® Testing whether a clutter is intersecting is easy.

e However, there are 3/l minors.

Theorem [Abdi, Cornuéjols, Lee] in Chapter 6

Let C be a clutter over ground set E. One can test whether C contains an
intersecting minor in poly(|C|, |E|) time.



Our tool

Theorem [Abdi, Cornuéjols, Lee] in Chapter 6

Let C be a clutter over ground set E. Then the following statements are
equivalent.

(1) C contains an intersecting minor,

(2) There are 3 distinct members Cy, Co, C3 such that the minor obtained after
deleting V — (C1 U G, U G3) and contracting elements in covers of size 1 is
intersecting.



Chapter 7. Multipartite clutters

® A multipartite clutter is the clutter of hyperedges in a multipartite

hypergraph.
clo o o]
o o o
o| |o e
o o o
E E; E,

® A clutter C over ground set E is multipartite if E is partitioned into parts
Ei, ..., E, so that for every C € C,

|[CNE|=1fori=1,...,n.

® Fi,...,E, are covers of C.

Question

Is there an ideal minimally non-packing multipartite clutter with large parts?



Multipartite clutters and the 7 = 2 Conjecture

® (The 7 = 2 Conjecture) If a clutter C is ideal and minimally non-packing,
then 7(C) = 2.

® Checking all minors is computationally expensive.

® In fact, we have shown that the 7 = 2 Conjecture is equivalent to the
following conjecture:

Conjecture (version 3)
If a multipartite clutter is ideal and has no intersecting minor, then it packs.

® We have a poly-time algorithm for recognizing intersecting minors [Abdi,
Cornuéjols, Lee].

® We just check if a multipartite clutter packs.

® Moreover, multipartite clutters have special structures!

® Can we find a counter-example to this conjecture?



Hamming representation

There is another way to represent multipartite clutters as graphs.
(The skeleton graph of) the n-dimensional hypercube is KoOKo0- - - OK>.
N——

n

o———0
K> Ky K>

The operation [ is called the Cartesian product.
In general, K.,0OK,,0---0OK,, for any wy,...,w, > 1.

e—o—=*

G H GOH



Hamming representation

® Forn>1, wi,...,ws >1, let H,,,... 0, denote K,,OK.,00---0OK.,.
® V(H.,,...,w,) can be written as [wi] X [w2] X -+ X [wn].
® For example, H2’ ) is the n-dimensional hypercube.

n

11

21

111 211

® Hz 33 is illustrated as follows:

131

121

111 211 311 112 113



Hamming representation

® Given S C V(Huy,...,wp) = [w1] X [w2] X -+ X [ws], one can construct a
multipartite clutter associated with S, denoted mult(S)!

® For instance, consider

122 222
11 21
121 21
111 211
111, 1 0/1 0[1 0
122, |1 0l0 1]0 1
Rii=19 212, M(mult(RL)) =1 5 1|1 0|0 1
21 0 1/0 1|1 o

mult(R11) = {{1,3,5},{1,4,6},{2,3,6},{2,4,5}} = Qs.



Hamming representation

® Another example is

131

121 S

131,231,311, 321,
112,122,212, 222,332

M(mult(S)) =

mult(S) = {{1,6,7},{2,6,7},...,{3,6,8}}.

® In fact, every multipartite clutter can be represented as mult(S) for some
Sg V(le ..... w,,)ywla"wwnz]-rnzl-



The conjecture

® Remember that the 7 = 2 Conjecture is equivalent to

The 7 = 2 Conjecture (version 3)

If a multipartite clutter is ideal and has no intersecting minor, then it packs.

® |s there S C V(H.y,...,w,) such that

(1) mult(S) is ideal,
(2) mult(S) has no intersecting minor, but

(3) mult(S) does not pack?



(1) Testing idealness: degree

® Given S C V/(H.y,....w,), We refer to the points in S as the feasible points
and the points in S := V/(H.,,...w,) \ S as the infeasible points.

® For example, in Hs3 3, the black points are feasible and the red points are
infeasible:

® The degree of S is defined as the maximum number of infeasible neighbors
of an infeasible vertex.

® The degree of S C V(H.,,....w,) is at most 37, (wi — 1).
Theorem [Abdi, Cornuéjols, Lee] (in Chapter 7)

Let S C V(Huy,...,w,) be of degree k. Then every minimally non-ideal minor of
mult(S), if any, has at most k elements.

Corollary

Let S C V(Hs33). If mult(S) is non-ideal, then it has one of Az, CZ, b(CZ2) as
a minor.



(2) Testing whether mult(S) packs

For u,v € V(Hu,,....w,) = [wi] X -+ X [wp], the distance between u and v
is equal to the number of different coordinates.

The distance is at most n (at most n different coordinates).

The members corresponding to u, v are disjoint if, and only if, v and v are
at distance n.

v(mult(S)) is the maximum number of points that are at pairwise distance
n.



(3) Recognizing intersecting minors

® Recall that

Theorem [Abdi, Cornuéjols, Lee] in Chapter 6

Let C be a clutter over ground set E. Then the following statements are
equivalent.

(1) C contains an intersecting minor,

(2) There are 3 distinct members Cy, Co, C3 such that the minor obtained after
deleting V — (C1 U G, U G3) and contracting elements in covers of size 1 is
intersecting.

® This implies



(3) Recognizing intersecting minors

Corollary

Let S C V(Hy,,....o,)- Then the following statements are equivalent:
(1) mult(S) has no intersecting minor,

(2) there are 3 distinct points u,v,w € S such that the smallest restriction of
S containing u, v, w has two points that differ in every coordinate.

® For example,

® This restriction corresponds is isomorphic to Ry1, and mult(Ry1) = Qs is
intersecting.



(3) Recognizing intersecting minors

® Remember that the 7 = 2 Conjecture is equivalent to
The 7 = 2 Conjecture (version 3)

If a multipartite clutter is ideal and has no intersecting minor, then it packs.

Theorem [Abdi, Cornuéjols, Lee] in Chapter 7

Let C be a multipartite clutter over at most 9 elements. If C is ideal and has no
intersecting minor, then C packs.



e Given S; C V(H.,,..

Chapter 8. The reflective product

wn ) and S, C V(Hs, ... s, ), the reflective product of
1 15--+59m

S1 and S, is obtained by replacing each point in S; with a copy of S; and
replacing each point in 5; with a copy of S».

® For example,

S
® Another example is

€4

@/

Ry,

S

€5 |




Chapter 8. The reflective product

® Let 53 % S, denote the reflective product of S; and 5.
® Why do we care?

Theorem [Abdi, Cornuéjols, Lee] in Chapter 8

If mult(S1), mult(Sy), mult(S,), mult(S,) are ideal, then
mult(51 * 52), mult(51 * 52)
are ideal.

® One can potentially create a large class of ideal clutters using the reflective
product.

® |s there a counter-example to the 7 = 2 Conjecture that is obtained by a
reflective product of two multipartite clutters?



Chapter 8. The reflective product

Theorem [Abdi, Cornuéjols, Lee] in Chapter 8

Let S C V(Huy,...,w,)- If S is the reflective product of two smaller sets and
mult(S) is ideal minimally non-packing, then wy = --- = w, = 2 and therefore
T(mult(S)) = 2.

® In fact, when w; = -+ = w, = 2, there are examples.

Ry Rs



Chapter 8. The reflective product

Theorem [Abdi, Cornuéjols, Guri€anova, Lee] in Chapter 8
Let S C V(Ho,...2). Assume that S = S1 % S». If mult(S) is ideal minimally
non-packing, then

@ S1 %S> = Ry1 for some k > 1,

® n=1and Sz,g are antipodally symmetric and strictly connected, or
@ n, =1 and S1, 51 are antipodally symmetric and strictly connected.



Chapter 9. Ideal vector spaces

Let g be a prime power, and S C GF(q)" be a vector space over GF(q).
Then
S={xe GF(q)": Ax=0}
for some matrix A whose entries are in GF(q).
When g = 2, S is called a binary space.
As GF(q)" 2 [q]", one can define mult(S).
(Question 1) When is mult(S) ideal?
(Question 2) When does mult(S) have the max-flow min-cut property?
Answers to these questions are provided in Chapter 9.

For each prime power g, we have found a structural characterization and
an excluded-minor characterization of when mult(S) is ideal and when
mult(S) has the max-flow min-cut property.



Thank you!



