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Integer linear programming

Integer linear programming (ILP)

Integer linear programming is an optimization problem of the following form:

min
{
c>x : Ax ≥ b, x ∈ Zn

}
(ILP)

where A ∈ Zm×n, b ∈ Zm, and c ∈ Zn

• If the LP relaxation, min
{
c>x : Ax ≥ b, x ∈ Rn

}
, has an integral

optimal solution, then it is an optimal solution to (ILP).

• If the polyhedron {x ∈ Rn : Ax ≥ b} is integral, then there is an integral
optimal solution to the LP relaxation.

• If not, we use cutting-plane methods in combination with enumeration
(branch-and-bound) in practice.
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Outline

Part I: Cutting planes for integer programming
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Chapter 1. On the Rational Polytopes with Chvátal Rank 1

Part I (Chapters 2 – 5): Cutting planes for integer programming

Based on

(1) On the rational polytopes with Chvátal rank 1 with G. Cornuéjols and Y.
Li, Math. Program. A, in press.

(2) On the NP-hardness of deciding emptiness of the split closure of a rational
polytope in the 0,1 hypercube, Discrete Optimization, in press.

(3) On some polytopes contained in the 0,1 hypercube that have a small
Chvatal rank with G. Cornuéjols, Math. Program. B, 2018.

(4) Generalized Chvátal-Gomory closures for integer programs with bounds on
variables with S. Dash and O. Günlük, to be submitted.

5/44



6/44

The Chvátal-Gomory cuts

• The Chvátal closure of a rational polyhedron P = {x ∈ Rn : Ax ≥ b} is
defined as

P ′ :=
⋂
c∈Zn

x ∈ Rn : cx ≥ dmin
y∈P

cye︸ ︷︷ ︸
the Chvátal-Gomory cut


Theorem [Chvátal, 1973, Schrijver, 1980]

Let P be a rational polyhedron, and let PI := conv (P ∩ Zn). Then
(1) P ′ is also a rational polyhedron,
(2) there exists a positive integer k such that P(k) = PI .

• The kth Chvátal closure of P is defined as

P(k) := ((P ′)′ · · · )′︸ ︷︷ ︸
k

• The Chvátal rank of P is the smallest integer k such that P(k) = PI .
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Bounds on the Chvátal rank

• Bounds on the Chvátal rank of a polytope in the 0,1 hypercube:

Theorem [Eisenbrand and Schulz, 2003]

Let P ⊆ [0, 1]n be a polytope. Then the Chvátal rank of P is O(n2 log n).

Theorem [Rothvoß and Sanità, 2013]

There exists a polytope P ⊆ [0, 1]n whose Chvátal rank is Ω(n2).

• When does a polytope in the 0,1 hypercube have a small Chvátal rank?

Theorem [Cornuéjols and Lee, 2018] (in Chapter 4)

Let P ⊆ [0, 1]n be a polytope, and let Gn denote the skeleton graph of [0, 1]n.
Let S̄ := {0, 1}n \ P. Then the following statements hold:

(1) if S̄ is a stable set in Gn, then the Chvátal rank of P is at most 1,

(2) if Gn[S̄ ] is a disjoint union of cycles of length greater than 4 and paths,
then the Chvátal rank of P is at most 2,

(3) if Gn[S̄ ] is a forest, then the Chvátal rank of P is at most 3.

(4) if Gn[S̄ ] has tree-width 2, then the Chvátal rank of P is at most 4.
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Bounds on the Chvátal rank

• Motivated by this result,

Theorem [Benchetrit, Fiorini, Huynh, Weltge, 2018]

If the tree-width of Gn[S̄ ] is t, then the Chvátal rank of P is at most t + 2tt/2.
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Complexity results

• Complexity results on the optimization over the Chvátal closure:

Theorem [Eisenbrand, 1999]

The separation problem over the Chvátal closure of a rational polyhedron
P = {x ∈ Rn : Ax ≥ b} is NP-hard.

Theorem [Cornuéjols and Li, 2016]

It is NP-hard to decide whether the Chvátal closure of a rational polyhedron
P = {x ∈ Rn : Ax ≥ b} is empty, even when P contains no integer point.

Theorem [Cornuéjols, Lee, Li, 2018+] (in Chapter 2)

The separation problem over the Chvátal closure of a rational polyhedron
P = {x ∈ Rn : Ax ≥ b} is NP-hard, even when P ⊆ [0, 1]n.

Theorem [Cornuéjols, Lee, Li, 2018+] (in Chapter 2)

It is NP-hard to decide whether the Chvátal closure of a rational polyhedron
P = {x ∈ Rn : Ax ≥ b} is empty, even when P contains no integer point and
P ⊆ [0, 1]n.
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A generalization of the Chvátal-Gomory cuts

• Given S ⊆ Zn and a polyhedron P ⊆ conv(S), the S-Chvátal closure of P
is defined as

PS :=
⋂
c∈Zn

x ∈ P : cx ≥ dmin
y∈P

cyeS,c︸ ︷︷ ︸
the S-Chvátal-Gomory cut

 .

where dmin
y∈P

cyeS,c := min

{
cz : cz ≥ min

y∈P
cy , z ∈ S

}
≥ dmin

y∈P
cye.

Theorem [Dash, Günlük, Lee] (in Chapter 5)

Let n1, n2, n3, n4 ∈ Z+, and let T be a finite subset of Zn1 . Let

S =
{

(z1, z2, z3, z4) ∈ T × Zn2 × Zn3 × Zn4 : `2 ≤ z2, z3 ≤ u3
}

where `2 ∈ Zn2 and u3 ∈ Zn3 . If P ⊆ conv(S) is a rational polyhedron, then the
S-Chvátal closure of P is a rational polyhedron.

• In particular, when S = {0, 1}n1 × Zn2
+ × Zn3 , PS is a polyhedron.
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The split cuts

• Split cuts are a generalization of the Chvátal-Gomory cuts.

• The split closure of a rational polyhedron is defined as the set of points
satisfying all split cuts [Cook, Kannan, Schrijver, 1990].

Theorem [Caprara and Letchford, 2003]

The separation problem over the split closure of a rational polyhedron
P = {x ∈ Rn : Ax ≥ b} is NP-hard.

Theorem [Lee, 2018+] (in Chapter 3)

The separation problem over the split closure of a rational polyhedron
P = {x ∈ Rn : Ax ≥ b} is NP-hard, even when P ⊆ [0, 1]n.

Theorem [Lee, 2018+] (in Chapter 3)

It is NP-hard to decide whether the split closure of a rational polyhedron
P = {x ∈ Rn : Ax ≥ b} is empty, even when P contains no integer point and
P ⊆ [0, 1]n.

Dabeen Lee Cutting Planes and Integrality of Polyhedra: Structure and Complexity



Chapter 1. On the Rational Polytopes with Chvátal Rank 1

Part II (Chapters 6 – 9): On the τ = 2 Conjecture

Based on

(1) Intersecting restrictions in clutters with A. Abdi and G. Cornuéjols,
submitted.

(2) Cuboids, a class of clutters with A. Abdi, G. Cornuéjols, and N.
Guric̆anová, submitted.

(3) Multipartite clutters with A. Abdi and G. Cornuéjols, in progress.

(4) Ideal vector spaces with A. Abdi and G. Cornuéjols, in progress.
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Questions

• When is {x : Ax ≥ b} integral?

• When is a linear system Ax ≥ b totally dual integral (TDI)?

• Ax ≥ b is TDI if (D) has an integral optimal solution for every w ∈ Zn.

(P)
min w>x
s.t. Ax ≥ b (D)

max b>y
s.t. y>A = w>

y ≥ 0

• If Ax ≥ b is TDI and b is integral, then {x : Ax ≥ b} is integral [Edmonds
and Giles, 1977].

• When does the converse hold?

Question

Let M be a 0, 1 matrix such that {x : Mx ≥ 1, x ≥ 0} is integral. When is the
system Mx ≥ 1, x ≥ 0 TDI?

• To answer this question, we study combinatorial structures of M, as well
as the geometry of the polyhedron {x : Mx ≥ 1, x ≥ 0}.
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Set covering problem

Mx ≥ 1, x ≥ 0 where M ∈ {0, 1}m×n.

• Let C ⊆ 2[n] be defined as

C := {C ⊆ [n] : χC is a row of M} .

• For example,

M =

 1 1 1 0 0 0
0 0 0 0 1 1
1 1 0 1 1 0


C = {{1, 2, 3}, {5, 6}, {1, 2, 4, 5}}

• We may assume that every inequality in Mx ≥ 1, x ≥ 0 is non-redundant.

• Sets in C are pairwise incomparable.
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Set covering problem

• Let E be a finite set of elements with nonnegative weights w ∈ RE
+.

• Let C ⊆ 2E be a family of subsets of E , called members.

• We call C a clutter if the members are pairwise incomparable.

• A subset B ⊆ E is a cover of C if

B ∩ C 6= ∅ ∀C ∈ C.
• The weight of B ⊆ E is w(B) :=

∑
e∈B we .

• The Set Covering Problem is to find a minimum weight cover of C.

• For example, E = {1, 2, 3, 4, 5, 6} and C = {{1, 2, 3}, {5, 6}, {1, 2, 4, 5}}.
• B = {2, 5} is a cover.
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Ideal clutters and integrality

• Given a clutter C, M(C) denote the member-element incidence matrix of C.

• We say that a clutter C is ideal if

{x : M(C)x ≥ 1, x ≥ 0}

is integral.

Examples:

(1) M(C) is totally unimodular.

(2) C is the clutter of st-paths in a graph with distinct s, t.{
x ∈ RE

+ : x(P) ≥ 1, ∀st-path P
}

(3) C is the clutter of T -cuts of a graph{
x ∈ RE

+ : x(δ(C)) ≥ 1, ∀C ⊆ V : |C ∩ T | odd
}
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The MFMC property and total dual integrality

• We say that a clutter C has the max-flow min-cut (MFMC) property if

M(C)x ≥ 1, x ≥ 0

is total dual integral.

• C has the MFMC property if τ(C,w) = ν(C,w) for any w ∈ ZE
+, where

τ(C,w) = min w>x
s.t. M(C)x ≥ 1

x ∈ ZE
+

ν(C,w) = max 1>y
s.t. y>M(C) ≤ w>

y ∈ ZC+

• A clutter with the MFMC property is always ideal [Edmonds and Giles,
1977].
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The MFMC property and total dual integrality

• In particular, if C has the MFMC property, then τ(C) = ν(C), where

τ(C) := τ(C, 1) = min
{

1>x : M(C)x ≥ 1, x ∈ ZE
+

}
ν(C) := ν(C, 1) = max

{
1>y : y>M(C) ≤ 1>, y ∈ ZC+

}
• Notice that

τ(C) = the minimum size of a cover of C (covering number),

ν(C) = the maximum number of disjoint members in C (packing number),

• We say that C packs if τ(C) = ν(C).
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Ideal clutters without the MFMC property

• However, there is an ideal clutter that does not have the MFMC property.

Q6 := {{1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}}

1

3

6 5

4

2 M(Q6) =


1 0 1 0 1 0
1 0 0 1 0 1
0 1 1 0 0 1
0 1 0 1 1 0


• Q6 is ideal.

• τ(Q6) = the minimum # of edges to cover all triangles = 2.

• ν(Q6) = the maximum # of disjoint triangles = 1 → τ(Q6) > ν(Q6).

Question

When does an ideal clutter have the MFMC property?
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Minors

• We define 2 minor operations with e ∈ E .

(1) Contraction C/e := {the minimal sets of {C − e : C ∈ C}}.
Set we to a large number → xe = 0.

(2) Deletion C \ e := {C ∈ C : e 6∈ C}.
Set we to 0 → xe = 1.

• A minor of C is what is obtained after a series of contractions and
deletions.

Remark

1 If a clutter is ideal, then so is every minor of it.
2 If a clutter has the MFMC property, then so does every minor of it.

• In the world of ideal clutters, is there an “excluded-minor characterization”
for clutters with the MFMC property?

20/44



The τ = 2 Conjecture

Let C be a clutter.

• Recall that C packs if τ(C) = ν(C), where

τ(C) = the minimum size of a cover of C (covering number),

ν(C) = the maximum number of disjoint members in C (packing number).

• If C has the MFMC property, as the MFMC property is a minor-closed
property, every minor of C packs.

The Replication Conjecture [Conforti and Cornuéjols, 1993]

If every minor of C packs, then C has the MFMC property.

• We say that C is minimally non-packing if C does not pack but all its
proper minors pack.

The τ = 2 Conjecture [Cornuéjols, Guenin, Margot, 2000]

If C is ideal and minimally non-packing, then τ(C) = 2.

• The τ = 2 Conjecture ⇒ the Replication Conjecture [Cornuéjols, Guenin,
Margot, 2000].
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Chapter 6. Intersecting clutters

• We say that a clutter C is intersecting if

τ(C) ≥ 2 and ν(C) = 1.

• A clutter is intersecting if any two members intersect, but there is no
single common element contained in all members.

• Q6 is intersecting, as τ(Q6) = 2 and ν(Q6) = 1.

• In fact, the τ = 2 Conjecture can be equivalently stated as

The τ = 2 Conjecture (version 2)

Let C be an ideal clutter. Then

C has the MFMC property ⇔ C has no intersecting minor.
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Deltas

• Deltas


1 1
1 1
...

. . .

1 1
1 1 · · · 1



∆n := {{1, 2}, {1, 3}, . . . , {1, n}, {2, 3, . . . , n}} , n ≥ 3

• ∆n denotes the delta of dimension n.

• τ(∆n) = 2 and ν(∆n) = 1.
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The blockers of odd holes

• The blockers of odd holes

1

2

3

n

n − 1
...

...


1 1

1 1
. . .

1 1
1 1



C 2
n := {{1, 2}, {2, 3}, . . . , {n − 1, n}, {n, 1}} , n : odd

• C 2
n denotes the odd hole of dimension n.

• Every vertex cover of C 2
n has > n

2
vertices.

• Two vertex covers of C 2
n always intersect!

• The clutter of minimal vertex covers of C 2
n is intersecting.
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Main result

• Recall that

The τ = 2 Conjecture (version 2)

Let C be an ideal clutter. Then

C has the MFMC property ⇔ C has no intersecting minor.

• Testing whether a clutter is intersecting is easy.

• However, there are 3|E | minors.

Theorem [Abdi, Cornuéjols, Lee] in Chapter 6

Let C be a clutter over ground set E. One can test whether C contains an
intersecting minor in poly(|C|, |E |) time.
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Our tool

Theorem [Abdi, Cornuéjols, Lee] in Chapter 6

Let C be a clutter over ground set E. Then the following statements are
equivalent.

(1) C contains an intersecting minor,

(2) There are 3 distinct members C1,C2,C3 such that the minor obtained after
deleting V − (C1 ∪ C2 ∪ C3) and contracting elements in covers of size 1 is
intersecting.

26/44



Chapter 7. Multipartite clutters

• A multipartite clutter is the clutter of hyperedges in a multipartite
hypergraph.

C

...

E1 E2 En

...
· · · ...

• A clutter C over ground set E is multipartite if E is partitioned into parts
E1, . . . ,En so that for every C ∈ C,

|C ∩ Ei | = 1 for i = 1, . . . , n.

• E1, . . . ,En are covers of C.

Question

Is there an ideal minimally non-packing multipartite clutter with large parts?
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Multipartite clutters and the τ = 2 Conjecture

• (The τ = 2 Conjecture) If a clutter C is ideal and minimally non-packing,
then τ(C) = 2.

• Checking all minors is computationally expensive.

• In fact, we have shown that the τ = 2 Conjecture is equivalent to the
following conjecture:

Conjecture (version 3)

If a multipartite clutter is ideal and has no intersecting minor, then it packs.

• We have a poly-time algorithm for recognizing intersecting minors [Abdi,
Cornuéjols, Lee].

• We just check if a multipartite clutter packs.

• Moreover, multipartite clutters have special structures!

• Can we find a counter-example to this conjecture?
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Hamming representation

• There is another way to represent multipartite clutters as graphs.

• (The skeleton graph of) the n-dimensional hypercube is K2�K2� · · ·�K2︸ ︷︷ ︸
n

.

K2 K2 K2

• The operation � is called the Cartesian product.

• In general, Kω1�Kω2� · · ·�Kωn for any ω1, . . . , ωn ≥ 1.
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Hamming representation

• For n ≥ 1, ω1, . . . , ωn ≥ 1, let Hω1,...,ωn denote Kω1�Kω2� · · ·�Kωn .

• V (Hω1,...,ωn ) can be written as [ω1]× [ω2]× · · · × [ωn].

• For example, H2, . . . , 2︸ ︷︷ ︸
n

is the n-dimensional hypercube.

• H3,3,3 is illustrated as follows:
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Hamming representation

• Given S ⊆ V (Hω1,...,ωn ) = [ω1]× [ω2]× · · · × [ωn], one can construct a
multipartite clutter associated with S , denoted mult(S)!

• For instance, consider

R1,1 =


111,
122,
212,
221

 M(mult(R1,1)) =


1 0 1 0 1 0
1 0 0 1 0 1
0 1 1 0 0 1
0 1 0 1 1 0


mult(R1,1) = {{1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}} = Q6.
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Hamming representation

• Another example is

S =

{
131, 231, 311, 321,
112, 122, 212, 222, 332

}

M(mult(S)) =


1 0 0 0 0 1 1 0
0 1 0 0 0 1 1 0

...
0 0 1 0 0 1 0 1


mult(S) = {{1, 6, 7}, {2, 6, 7}, . . . , {3, 6, 8}}.

• In fact, every multipartite clutter can be represented as mult(S) for some
S ⊆ V (Hω1,...,ωn ), ω1, . . . , ωn ≥ 1, n ≥ 1.
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The conjecture

• Remember that the τ = 2 Conjecture is equivalent to

The τ = 2 Conjecture (version 3)

If a multipartite clutter is ideal and has no intersecting minor, then it packs.

• Is there S ⊆ V (Hω1,...,ωn ) such that

(1) mult(S) is ideal,

(2) mult(S) has no intersecting minor, but

(3) mult(S) does not pack?
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(1) Testing idealness: degree

• Given S ⊆ V (Hω1,...,ωn ), we refer to the points in S as the feasible points
and the points in S := V (Hω1,...,ωn ) \ S as the infeasible points.

• For example, in H3,3,3, the black points are feasible and the red points are
infeasible:

• The degree of S is defined as the maximum number of infeasible neighbors
of an infeasible vertex.

• The degree of S ⊆ V (Hω1,...,ωn ) is at most
∑n

i=1(ωi − 1).

Theorem [Abdi, Cornuéjols, Lee] (in Chapter 7)

Let S ⊆ V (Hω1,...,ωn ) be of degree k. Then every minimally non-ideal minor of
mult(S), if any, has at most k elements.

Corollary

Let S ⊆ V (H3,3,3). If mult(S) is non-ideal, then it has one of ∆3, C 2
5 , b(C 2

5 ) as
a minor.
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(2) Testing whether mult(S) packs

• For u, v ∈ V (Hω1,...,ωn ) = [ω1]× · · · × [ωn], the distance between u and v
is equal to the number of different coordinates.

• The distance is at most n (at most n different coordinates).

• The members corresponding to u, v are disjoint if, and only if, u and v are
at distance n.

• ν(mult(S)) is the maximum number of points that are at pairwise distance
n.
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(3) Recognizing intersecting minors

• Recall that

Theorem [Abdi, Cornuéjols, Lee] in Chapter 6

Let C be a clutter over ground set E. Then the following statements are
equivalent.

(1) C contains an intersecting minor,

(2) There are 3 distinct members C1,C2,C3 such that the minor obtained after
deleting V − (C1 ∪ C2 ∪ C3) and contracting elements in covers of size 1 is
intersecting.

• This implies
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(3) Recognizing intersecting minors

Corollary

Let S ⊆ V (Hω1,...,ωn ). Then the following statements are equivalent:

(1) mult(S) has no intersecting minor,

(2) there are 3 distinct points u, v ,w ∈ S such that the smallest restriction of
S containing u, v ,w has two points that differ in every coordinate.

• For example,

• This restriction corresponds is isomorphic to R1,1, and mult(R1,1) = Q6 is
intersecting.
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(3) Recognizing intersecting minors

• Remember that the τ = 2 Conjecture is equivalent to

The τ = 2 Conjecture (version 3)

If a multipartite clutter is ideal and has no intersecting minor, then it packs.

Theorem [Abdi, Cornuéjols, Lee] in Chapter 7

Let C be a multipartite clutter over at most 9 elements. If C is ideal and has no
intersecting minor, then C packs.
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Chapter 8. The reflective product

• Given S1 ⊆ V (Hω1,...,ωn1
) and S2 ⊆ V (Hδ1,...,δn2

), the reflective product of
S1 and S2 is obtained by replacing each point in S1 with a copy of S2 and
replacing each point in S1 with a copy of S2.

• For example,

• Another example is
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Chapter 8. The reflective product

• Let S1 ∗ S2 denote the reflective product of S1 and S2.

• Why do we care?

Theorem [Abdi, Cornuéjols, Lee] in Chapter 8

If mult(S1), mult(S1), mult(S2), mult(S2) are ideal, then

mult(S1 ∗ S2), mult(S1 ∗ S2)

are ideal.

• One can potentially create a large class of ideal clutters using the reflective
product.

• Is there a counter-example to the τ = 2 Conjecture that is obtained by a
reflective product of two multipartite clutters?
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Chapter 8. The reflective product

Theorem [Abdi, Cornuéjols, Lee] in Chapter 8

Let S ⊆ V (Hω1,...,ωn ). If S is the reflective product of two smaller sets and
mult(S) is ideal minimally non-packing, then ω1 = · · · = ωn = 2 and therefore
τ(mult(S)) = 2.

• In fact, when ω1 = · · · = ωn = 2, there are examples.
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Chapter 8. The reflective product

• When ω1 = · · · = ωn = 2,

Theorem [Abdi, Cornuéjols, Guric̆anová, Lee] in Chapter 8

Let S ⊆ V (H2,...,2). Assume that S = S1 ∗ S2. If mult(S) is ideal minimally
non-packing, then

(i) S1 ∗ S2
∼= Rk,1 for some k ≥ 1,

(ii) n1 = 1 and S2, S2 are antipodally symmetric and strictly connected, or
(iii) n2 = 1 and S1, S1 are antipodally symmetric and strictly connected.
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Chapter 9. Ideal vector spaces

• Let q be a prime power, and S ⊆ GF (q)n be a vector space over GF (q).
Then

S = {x ∈ GF (q)n : Ax = 0}

for some matrix A whose entries are in GF (q).

• When q = 2, S is called a binary space.

• As GF (q)n ∼= [q]n, one can define mult(S).

• (Question 1) When is mult(S) ideal?

• (Question 2) When does mult(S) have the max-flow min-cut property?

• Answers to these questions are provided in Chapter 9.

• For each prime power q, we have found a structural characterization and
an excluded-minor characterization of when mult(S) is ideal and when
mult(S) has the max-flow min-cut property.
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Thank you!
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