IE 539 Convex Optimization Assignment 4

Fall 2023

Out: 13th November 2023
Due: 27th November 2023 at 11:59pm

Instructions

- Submit a PDF document with your solutions through the assignment portal on KLMS by the due date. Please ensure that your name and student ID are on the front page.
- Late assignments will be subject to a penalty. Special consideration should be applied for in this case.
- It is required that you typeset your solutions in LaTeX. Handwritten solutions will not be accepted.
- Spend some time ensuring your arguments are coherent and your solutions clearly communicate your ideas.

Question:	1	2	3	4	5	Total
Points:	20	20	20	20	20	100

1. (20 points) Let $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a closed convex function. Show that for any $x, y \in \mathbb{R}^{d}$ and $\eta>0$,

$$
\left\|\operatorname{prox}_{\eta h}(x)-\operatorname{prox}_{\eta h}(y)\right\|_{2} \leq\|x-y\|_{2} .
$$

2. (20 points) Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be given by $f=g+h$ where $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a smooth convex function and $h: \mathbb{R}^{d}$ is closed and convex. Show that for any $\eta>0, x^{*} \in \arg \min _{x \in \mathbb{R}^{d}} f(x)$ if and only if

$$
x^{*}=(I+\eta \partial h)^{-1}(I-\eta \nabla g)\left(x^{*}\right)
$$

3. In this question, we use Lagrangian duality to derive a solution to the following optimization problem.

$$
\min _{x \in \Delta_{d}}\left\{v^{\top} x+\sum_{i=1}^{d} x_{i} \log x_{i}\right\}
$$

where $\Delta_{d}=\left\{x \in \mathbb{R}_{+}^{d}: \sum_{i=1}^{d} x_{i}=1\right\}$.
(a) (10 points) The Lagrangian function is defined as

$$
\mathcal{L}(x, \lambda, \mu)=v^{\top} x+\sum_{i=1}^{d} x_{i} \log x_{i}-\lambda^{\top} x+\mu\left(1-\sum_{i=1}^{d} x_{i}\right) .
$$

Then show that the associated Lagrangian dual function is given by

$$
q(\lambda, \mu)=\mu-\sum_{i=1}^{d} e^{\lambda_{i}+\mu-v_{i}-1}
$$

(b) (5 points) Let $\left(\lambda^{*}, \mu^{*}\right)$ be an optimal solution to the Lagrangian dual problem. Then show that $\lambda^{*}=0$ and μ^{*} satisfies

$$
e^{\mu^{*}-1}=\frac{1}{\sum_{i=1}^{d} e^{-v_{i}}}
$$

(c) (5 points) Show that the optimal solution x^{*} satisfies

$$
x_{j}^{*}=\frac{e^{-v_{j}}}{\sum_{i=1}^{d} e^{-v_{i}}} \quad \text { for } j=1, \ldots, d
$$

4. In this question we prove the convergence of the primal-dual subgradient method for saddle point problems. Let $\phi: \mathbb{R}^{d} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a function such that $\phi(x, y)$ for any fixed $y \in \mathbb{R}^{m}$ is convex in x and $\phi(x, y)$ for any fixed $x \in \mathbb{R}^{d}$ is concave in x. Recall that the primal-dual subgradient method proceeds as follows.

- Choose $x_{1} \in X$ and $y_{1} \in Y$.
- For $t=1,2,3, \ldots, T-1$:
- Select $g_{x, t} \in \partial_{x} \phi\left(x_{t}, y_{t}\right), g_{y, t} \in \partial_{y} \phi\left(x_{t}, y_{t}\right)$, and step size $\eta_{t}>0$.
- Compute $x_{t+1}=\operatorname{proj}_{X}\left\{x_{t}-\eta_{t} g_{x, t}\right\}$ and $y_{t+1}=\operatorname{proj}_{Y}\left\{y_{t}+\eta_{t} g_{y, t}\right\}$.

Assume that X and Y are convex.
(a) (5 points) Show that for any $(\bar{x}, \bar{y}) \in X \times Y, g_{x} \in \partial_{x} \phi(\bar{x}, \bar{y})$, and $g_{y} \in \partial_{y} \phi(\bar{x}, \bar{y})$,

$$
\phi(\bar{x}, y)-\phi(x, \bar{y}) \leq-g_{x}^{\top}(x-\bar{x})+g_{y}^{\top}(y-\bar{y}) \quad \forall(x, y) \in X \times Y
$$

(b) (15 points) Let \bar{x}_{T} and \bar{y}_{T} be defined as

$$
\bar{x}_{T}=\left(\sum_{t=1}^{T} \eta_{t}\right)^{-1} \sum_{t=1}^{T} \eta_{t} x_{t}, \quad \bar{y}_{T}=\left(\sum_{t=1}^{T} \eta_{t}\right)^{-1} \sum_{t=1}^{T} \eta_{t} y_{t} .
$$

Show that for any $(x, y) \in X \times Y$,

$$
\phi\left(\bar{x}_{T}, y\right)-\phi\left(x, \bar{y}_{T}\right) \leq \frac{1}{2 \sum_{t=1}^{T} \eta_{t}}\left(\left\|\left(x_{1}, y_{1}\right)-(x, y)\right\|_{2}^{2}+\sum_{t=1}^{T} \eta_{t}^{2}\left\|\left(g_{x, t}, g_{y, t}\right)\right\|_{2}^{2}\right)
$$

5. (20 points) Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a closed convex function. Using the fact that

$$
x=\operatorname{prox}_{f}(x)+\operatorname{prox}_{f^{*}}(x)
$$

show that for any $\lambda>0$,

$$
x=\operatorname{prox}_{\lambda f}(x)+\lambda \operatorname{prox}_{(1 / \lambda) f^{*}}(x / \lambda) .
$$

