
IE 539 Convex Optimization Assignment 3

Fall 2023

Out: 23rd October 2023

Due: 8th November 2023 at 11:59pm

Instructions

• Submit a PDF document with your solutions through the assignment portal on KLMS by the due date.
Please ensure that your name and student ID are on the front page.

• Late assignments will be subject to a penalty. Special consideration should be applied for in this case.

• It is required that you typeset your solutions in LaTeX. Handwritten solutions will not be accepted.

• Spend some time ensuring your arguments are coherent and your solutions clearly communicate your
ideas.

Question: 1 2 3 4 Total

Points: 25 25 25 25 100
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1. (25 points) Prove that for a positive definite matrix A,

f(x) =
1

2
x>Ax+ b>x+ c

is smooth and strongly convex in the `2-norm. Write down the smoothness constant and the strong convexity
constant.

2. (25 points) In this question we prove the convergence of the projected subgradient method for functions
that are strongly convex and Lipschitz continuous. Let f : C → R be a function that is α-strongly convex
with respect to the `2 norm and L-Lipschitz continuous in the `2 norm over a convex domain C. Recall
that the projected subgradient method proceeds as follows.

• Choose x1 ∈ C.

• For t = 1, 2, 3, . . . , T − 1:

– Select any subgradient gt ∈ ∂f(xt) and step size ηt > 0.

– Compute xt+1 = ProjC{xt − ηtgt}.
(a) Set ηt = 2

α(t+1) . Show that

f

(
T∑
t=1

2t

T (T + 1)
xt

)
− f(x∗) ≤ 2L2

α(T + 1)

where x∗ ∈ arg minx∈C f(x).

(b) Set ηt = 1
αt . Show that

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ L2(1 + log T )

2αT

where x∗ ∈ arg minx∈C f(x).

3. (25 points) In this question we will work through the convergence analysis of the online (projected) sub-
gradient method for online convex optimization where the loss functions are strongly convex and Lipschitz
continuous. Let f1, . . . , fT : C → R be a loss functions that are α-strongly convex with respect to the `2
norm and L-Lipschitz continuous in the `2 norm over a convex domain C. Recall that the online (projected)
subgradient method proceeds as follows.

• Choose x1 ∈ C.

• For t = 1, 2, 3, . . . , T − 1:

– Observe ft and Select any subgradient gt ∈ ∂ft(xt) and step size ηt > 0.

– Compute xt+1 = ProjC{xt − ηtgt}.
(a) Show that for each t, we have

ft(xt)− ft(x∗) ≤
(

1

2ηt
− α

2

)
‖xt − x∗‖22 −

1

2ηt
‖xt+1 − x∗‖22 +

ηt
2
‖gt‖22

where x∗ is an optimal solution to minx∈C
∑T
t=1 ft(x

∗).

(b) Set ηt = 1
αt . Then use part (a) to show that

T∑
t=1

ft(xt)−min
x∈C

T∑
t=1

ft(x) ≤ L2

2α
(1 + lnT ).

4. (25 points) In this question we prove the convergence of stochastic gradient descent for functions that are
strongly convex and Lipschitz continuous. Let f : C → R be a function that is α-strongly convex with
respect to the `2 norm and L-Lipschitz continuous in the `2 norm over a convex domain C. Recall that
stochastic gradient descent proceeds as follows.

• Choose x1 ∈ C.

• For t = 1, 2, 3, . . . , T − 1:

– Obtain an unbiased estimator ĝxt of some g ∈ ∂f(xt).

– Update xt+1 = ProjC {xt − ηtĝxt
} for a step size ηt > 0.

Page 1 of 2.



IE 539 Convex Optimization Assignment 3 Due 8th November 2023

Set ηt = 1
αt . Assuming ‖ĝxt‖2 ≤ L for all t, show that

E

[
f

(
1

T

T∑
t=1

xt

)]
− f(x∗) ≤ L2(1 + log T )

2αT

where x∗ ∈ arg minx∈C f(x).
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