IE 539 Convex Optimization Assignment 2

Fall 2022

Out: 27th September 2022
Due: 9th October 2022 at 11:59pm

Instructions

- Submit a PDF document with your solutions through the assignment portal on KLMS by the due date. Please ensure that your name and student ID are on the front page.
- Late assignments will not be accepted except in extenuating circumstances. Special consideration should be applied for in this case.
- It is required that you typeset your solutions in LaTeX. Handwritten solutions will not be accepted.
- Spend some time ensuring your arguments are coherent and your solutions clearly communicate your ideas.

Question:	1	2	3	4	5	6	Total
Points:	15	15	15	10	20	25	100

1. For a fixed z, derive closed form optimal solutions for
(a) (5 points) $\min _{x \in \mathbb{R}^{d}}\left\{\frac{1}{2}\|x-z\|_{2}^{2}+\lambda\|x\|_{2}^{2}\right\}$
(b) (10 points) $\min _{x \in \mathbb{R}^{d}}\left\{\frac{1}{2}\|x-z\|_{2}^{2}+\lambda\|x\|_{1}\right\}$.
2. (15 points) Let $X=\left\{x \in \mathbb{R}^{d}:\left\|x-x_{0}\right\|_{2} \leq r\right\}$ be a ball of radius r centred at the point x_{0}. Find an expression for the projection onto X. In other words, for $z \in \mathbb{R}^{d}$, find $\arg \min _{x \in X}\left\{\frac{1}{2}\|x-z\|_{2}^{2}: x \in X\right\}$. To get full marks, you must also prove that your expression is correct.
3. (15 points) Recall the ℓ_{1} - and ℓ_{∞}-norms are defined as

$$
\|x\|_{1}:=\sum_{i \in[d]}\left|x_{i}\right|, \quad\|x\|_{\infty}:=\max _{i \in[d]}\left|x_{i}\right| .
$$

The dual norm is defined as

$$
\|x\|_{*}:=\max _{z:\|z\| \leq 1} x^{\top} z
$$

Show that the ℓ_{1}-norm is the dual norm to the ℓ_{∞}-norm, and vice versa.
[Hint: given x, which vector would give $x^{\top} z=\sum_{i \in[d]}\left|x_{i}\right|=\|x\|_{1}$? Since $\left|x_{i}\right|=\operatorname{sign}\left(x_{i}\right) x_{i}$, we can see that such a vector must satisfy $\sum_{i \in[d]}\left(\operatorname{sign}\left(x_{i}\right)-z_{i}\right) x_{i}=0$. Derive a guess for z from this, and argue why it satisfies the optimality condition for $\max _{z:\|z\|_{\infty}} x^{\top} z$.
Modify this strategy to show that the dual of the ℓ_{1}-norm is the ℓ_{∞}-norm. For this part, it may help to write $\left.\left\{z:\|z\|_{1} \leq 1\right\}=\left\{z: z_{i}=s_{i} w_{i}, s_{i} \in\{-1,0,1\}, w_{i} \geq 0 \forall i \in[d], \sum_{i \in[d]} w_{i} \leq 1\right\}.\right]$
4. (10 points) Given a convex set C, suppose that x^{*} solves $\min _{x \in C} \frac{1}{2}\|x\|_{2}^{2}$. Show that for any $x \in C$,

$$
\frac{1}{2}\left\|x-x^{*}\right\|_{2}^{2} \leq \frac{1}{2}\|x\|_{2}^{2}-\frac{1}{2}\left\|x^{*}\right\|_{2}^{2}
$$

5. In this question we will work through the convergence analysis of the subgradient method for functions that are strongly convex and Lipschitz continuous. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function that is α-strongly convex with respect to the ℓ_{2} norm and L-Lipschitz continuous in the ℓ_{2} norm. Recall that the subgradient method proceeds as follows.

- Choose $x_{1} \in \mathbb{R}^{d}$.
- For $t=1,2,3, \ldots, T+1$:
- Select any subgradient $g_{t} \in \partial f\left(x_{t}\right)$ and step size $\eta_{t}>0$.
- Compute $x_{t+1}=x_{t}-\eta_{t} g_{t}$.
(a) (10 points) Show that for each t, we have

$$
f\left(x_{t}\right)-f\left(x^{*}\right) \leq\left(\frac{1}{2 \eta_{t}}-\frac{\alpha}{2}\right)\left\|x_{t}-x^{*}\right\|_{2}^{2}-\frac{1}{2 \eta_{t}}\left\|x_{t+1}-x^{*}\right\|_{2}^{2}+\eta_{t}^{2}\left\|g_{t}\right\|_{2}^{2}
$$

where x^{*} is an optimal solution to $\min _{x \in \mathbb{R}^{d}} f(x)$.
(b) (10 points) Set $\eta_{t}=\frac{2}{\alpha(t+1)}$. Then use part (a) to show that

$$
f\left(\sum_{t=1}^{T} \frac{2 t}{T(T+1)} x_{t}\right)-f\left(x^{*}\right) \leq \frac{2 L^{2}}{\alpha(T+1)}
$$

6. In this question we will work through the proof of projected subgradient descent and derive rates for Lipschitz continuous functions. The algorithm proceeds as follows:

- Choose $x_{1} \in C$.
- For $t=1,2,3, \ldots, T+1$:
- Select any subgradient $g_{t} \in \partial f\left(x_{t}\right)$ and step size $\eta_{t}>0$.
- Compute $x_{t+1}=\arg \min _{x \in C}\left\|x_{t}-\eta_{t} g_{t}-x\right\|_{2}^{2}$.
(a) (10 points) Show that for each t, we have

$$
\left\|x_{t+1}-x^{*}\right\|_{2}^{2} \leq\left\|x_{t}-\eta_{t} g_{t}-x^{*}\right\|_{2}^{2}
$$

where x^{*} is an optimal solution to $\min _{x \in \mathbb{R}^{d}} f(x)$.
(b) (10 points) The rate of convergence of projected subgradient descent depends on the step sizes η_{t}. Derive the rates of convergence for the following three step size rules:

$$
\eta_{t}=\frac{1}{\sqrt{t}}, \quad \eta_{t}=\frac{1}{t}, \quad \eta_{t}=\eta
$$

You may use the following facts without proof: there exists constants $c_{1}, c_{2}, c_{3}, c_{4}$ such that

$$
c_{1} \sqrt{T} \leq \sum_{t \in[T]} \frac{1}{\sqrt{t}}, \quad c_{2} \log (T) \leq \sum_{t \in[T]} \frac{1}{t} \leq c_{3} \log (T), \quad \sum_{t \in[T]} \frac{1}{t^{2}} \leq c_{4}
$$

Show that if we know T ahead of time, we can choose η in such a way that the third rate is faster than the first two.
(c) (5 points) Set $\eta_{t}=\frac{\left\|x_{1}-x^{*}\right\|_{2}}{L \sqrt{T}}$. Then use part (a) to show that

$$
f\left(\frac{1}{T} \sum_{t=1}^{T} x_{t}\right)-f\left(x^{*}\right) \leq \frac{L\left\|x_{1}-x^{*}\right\|_{2}}{\sqrt{T}}
$$

