
IE 539 Convex Optimization Assignment 2

Fall 2022

Out: 27th September 2022

Due: 9th October 2022 at 11:59pm

Instructions

• Submit a PDF document with your solutions through the assignment portal on KLMS by the due date.
Please ensure that your name and student ID are on the front page.

• Late assignments will not be accepted except in extenuating circumstances. Special consideration should
be applied for in this case.

• It is required that you typeset your solutions in LaTeX. Handwritten solutions will not be accepted.

• Spend some time ensuring your arguments are coherent and your solutions clearly communicate your
ideas.
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1. For a fixed z, derive closed form optimal solutions for

(a) (5 points) minx∈Rd

{
1
2∥x− z∥22 + λ∥x∥22

}
(b) (10 points) minx∈Rd

{
1
2∥x− z∥22 + λ∥x∥1

}
.

2. (15 points) Let X = {x ∈ Rd : ∥x − x0∥2 ≤ r} be a ball of radius r centred at the point x0. Find an
expression for the projection onto X. In other words, for z ∈ Rd, find argminx∈X

{
1
2∥x− z∥22 : x ∈ X

}
. To

get full marks, you must also prove that your expression is correct.

3. (15 points) Recall the ℓ1- and ℓ∞-norms are defined as

∥x∥1 :=
∑
i∈[d]

|xi|, ∥x∥∞ := max
i∈[d]

|xi|.

The dual norm is defined as
∥x∥∗ := max

z:∥z∥≤1
x⊤z.

Show that the ℓ1-norm is the dual norm to the ℓ∞-norm, and vice versa.

[Hint: given x, which vector would give x⊤z =
∑

i∈[d] |xi| = ∥x∥1? Since |xi| = sign(xi)xi, we can see that

such a vector must satisfy
∑

i∈[d](sign(xi) − zi)xi = 0. Derive a guess for z from this, and argue why it

satisfies the optimality condition for maxz:∥z∥∞ x⊤z.

Modify this strategy to show that the dual of the ℓ1-norm is the ℓ∞-norm. For this part, it may help to
write {z : ∥z∥1 ≤ 1} = {z : zi = siwi, si ∈ {−1, 0, 1}, wi ≥ 0 ∀i ∈ [d],

∑
i∈[d] wi ≤ 1}.]

4. (10 points) Given a convex set C, suppose that x∗ solves minx∈C
1
2∥x∥

2
2. Show that for any x ∈ C,

1

2
∥x− x∗∥22 ≤ 1

2
∥x∥22 −

1

2
∥x∗∥22.

5. In this question we will work through the convergence analysis of the subgradient method for functions that
are strongly convex and Lipschitz continuous. Let f : Rd → R be a function that is α-strongly convex with
respect to the ℓ2 norm and L-Lipschitz continuous in the ℓ2 norm. Recall that the subgradient method
proceeds as follows.

• Choose x1 ∈ Rd.

• For t = 1, 2, 3, . . . , T + 1:

– Select any subgradient gt ∈ ∂f(xt) and step size ηt > 0.

– Compute xt+1 = xt − ηtgt.

(a) (10 points) Show that for each t, we have

f(xt)− f(x∗) ≤
(

1

2ηt
− α

2

)
∥xt − x∗∥22 −

1

2ηt
∥xt+1 − x∗∥22 + η2t ∥gt∥22

where x∗ is an optimal solution to minx∈Rd f(x).

(b) (10 points) Set ηt =
2

α(t+1) . Then use part (a) to show that

f

(
T∑

t=1

2t

T (T + 1)
xt

)
− f(x∗) ≤ 2L2

α(T + 1)
.

6. In this question we will work through the proof of projected subgradient descent and derive rates for
Lipschitz continuous functions. The algorithm proceeds as follows:

• Choose x1 ∈ C.

• For t = 1, 2, 3, . . . , T + 1:

– Select any subgradient gt ∈ ∂f(xt) and step size ηt > 0.

– Compute xt+1 = argminx∈C ∥xt − ηtgt − x∥22.
(a) (10 points) Show that for each t, we have

∥xt+1 − x∗∥22 ≤ ∥xt − ηtgt − x∗∥22

where x∗ is an optimal solution to minx∈Rd f(x).
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(b) (10 points) The rate of convergence of projected subgradient descent depends on the step sizes ηt.
Derive the rates of convergence for the following three step size rules:

ηt =
1√
t
, ηt =

1

t
, ηt = η.

You may use the following facts without proof: there exists constants c1, c2, c3, c4 such that

c1
√
T ≤

∑
t∈[T ]

1√
t
, c2 log(T ) ≤

∑
t∈[T ]

1

t
≤ c3 log(T ),

∑
t∈[T ]

1

t2
≤ c4.

Show that if we know T ahead of time, we can choose η in such a way that the third rate is faster than
the first two.

(c) (5 points) Set ηt =
∥x1−x∗∥2

L
√
T

. Then use part (a) to show that

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ L∥x1 − x∗∥2√

T
.
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