# IE 539 Convex Optimization Assignment 1 

Fall 2022

Out: 7th September 2022

## Due: 23rd September 2022 at 11:59pm

## Instructions

- Submit a PDF document with your solutions through the assignment portal on KLMS by the due date. Please ensure that your name and student ID are on the front page.
- Late assignments will not be accepted except in extenuating circumstances. Special consideration should be applied for in this case.
- It is required that you typeset your solutions in LaTeX. Handwritten solutions will not be accepted.
- Spend some time ensuring your arguments are coherent and your solutions clearly communicate your ideas.

| Question: | 1 | 2 | 3 | 4 | 5 | 6 | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Points: | 10 | 5 | 15 | 30 | 20 | 20 | 100 |

1. (10 points) Fix a point $y \in \mathbb{R}^{d}$ and a set $Z \subseteq \mathbb{R}^{d}$. Show that the set

$$
X:=\left\{x \in \mathbb{R}^{d}:\|x-y\|_{2} \leq \operatorname{dist}(x, Z)\right\}
$$

is convex, where $\operatorname{dist}(x, Z):=\min _{z \in Z}\|x-z\|_{2}$.
2. (5 points) Show that a quadratic function $f(x)=x^{\top} Q x+c^{\top} x$, where $Q$ is symmetric positive semidefinite, is convex. Give an example of a quadratic (e.g., in $\mathbb{R}^{2}$ ) that is neither convex or concave.
3. This question asks you to prove that $f(x)=\|A x-b\|_{2}^{2} /\left(1-\|x\|_{2}^{2}\right)$ is convex on the open unit ball $X=$ $\left\{x \in \mathbb{R}^{d}:\|x\|_{2}<1\right\}$. Answer the following sub-questions that lead to a proof.
(a) (5 points) Show that $g(x, t)=\|x\|_{2}^{2}+\|A x-b\|_{2}^{2} / t$ over $(x, t) \in X \times \mathbb{R}_{++}$is convex.
(b) (5 points) Show that the epigraph of $f$ is given by

$$
\operatorname{epi}(f)=\left\{(x, t): g(x, t) \leq 1,\|x\|_{2}<1, t>0\right\} \cup\left\{(x, 0):\|x\|_{2}<1, A x=b\right\}
$$

(c) (5 points) Complete the proof that $f$ is convex on $X$.
4. Verify convexity/concavity of the following functions. You may use the first-order and second-order characterizations of convex functions, while there exists a direct proof based on the definition of convex functions.
(a) (5 points) The negative entropy function is convex on $\mathbb{R}_{++}^{d}$ :

$$
f(x):=\sum_{i \in[d]} x_{i} \log \left(x_{i}\right)
$$

(b) (5 points) The log-sum-exp function is convex:

$$
f(x)=\log \left(\sum_{i \in[d]} \exp \left(x_{i}\right)\right) .
$$

[Hint: An elementary proof exists by showing $f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)$. You may use (without proof) the inequality $\sum_{i \in[d]}\left|u_{i}\right|^{\lambda}\left|v_{i}\right|^{1-\lambda} \leq\left(\sum_{i \in[d]}\left|u_{i}\right|\right)^{\bar{\lambda}}\left(\sum_{i \in[d]}\left|v_{i}\right|\right)^{1-\lambda}$.]
(c) (5 points) The geometric mean is concave on $\mathbb{R}_{++}^{d}$ :

$$
f(x)=\left(\prod_{i \in[d]} x_{i}\right)^{1 / d}
$$

[Hint: compute $\frac{\lambda f(x)+(1-\lambda) f(y)}{f(\lambda x+(1-\lambda) y)}$. You may use (without proof) the arithmetic-geometric mean inequality: $\left.\left(\prod_{i \in[d]} x_{i}\right)^{1 / d} \leq \frac{1}{d} \sum_{i \in[d]} x_{i}.\right]$
(d) (5 points) The log-determinant is concave on $\mathbb{S}_{++}^{d}$, the set of $d \times d$ positive "definite" matrices:

$$
f(X)=\log \operatorname{det}(X)
$$

Note: the determinant of a matrix $X \in \mathbb{S}_{++}^{d}$ is simply the product of its eigenvalues (which are all positive by assumption). You will need the following properties of matrices/determinants which you can use without proof:

- $\operatorname{det}(A B)=\operatorname{det}(B A)=\operatorname{det}(A) \operatorname{det}(B)$ for $A, B \in \mathbb{S}_{++}^{d}$.
- If $A \in \mathbb{S}_{++}^{d}$, then we can write $A=P D P^{\top}$ where $P^{\top} P=P P^{\top}=I$ and $D$ is diagonal with strictly positive entries. Let $D^{r}$ be the diagonal matrix with all diagonal entries of $D$ raised to the power $r \in \mathbb{R}$. We can define powers of $A$ via $A^{r}=P D^{r} P^{\top}$, which have the same properties as the usual powers: $A^{r} A^{s}=A^{s} A^{r}=A^{r+s}, A^{0}=I$. Furthermore, $\operatorname{det}\left(A^{r}\right)=\operatorname{det}(A)^{r}$.
- $\alpha A+\beta B=A^{1 / 2}\left(\alpha I+\beta A^{-1 / 2} B A^{-1 / 2}\right) A^{1 / 2}$ for any $A, B \in \mathbb{S}_{++}^{d}$ and $\alpha, \beta \geq 0$.
(e) (5 points) The conjugate of a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ :

$$
f^{*}(x)=\sup _{y \in \mathbb{R}^{d}}\{\langle y, x\rangle-f(y)\}
$$

(f) (5 points) The sum of $k$ largest components of $x \in \mathbb{R}^{d}$ :

$$
f(x)=x_{\sigma(1)}+\cdots+x_{\sigma(k)}
$$

where $x_{\sigma(1)} \geq \cdots \geq x_{\sigma(d)}$ are the rearrangement of $x_{1}, \ldots, x_{d}$ in nonincreasing order.
5. Let $C \subseteq \mathbb{R}^{d}$ be a set. The dual cone of $C$ is defined as

$$
C^{*}=\left\{y \in \mathbb{R}^{d}: y^{\top} x \geq 0 \forall x \in C\right\}
$$

(a) (5 points) Show that $C^{*}$ is a convex cone.
(b) (5 points) Let $K=\left\{(x, y, z) \in \mathbb{R} \times \mathbb{R}_{++} \times \mathbb{R}: y \exp (x / y) \leq z\right\}$. Show that $K$ is a convex cone.
(c) (2 points) The dual cone of $K$ is given by

$$
K^{*}=\left\{(u, v, w) \in \mathbb{R}^{3}: u x+v y+w z \geq 0 \forall(x, y, z) \in K\right\}
$$

Show that for any $(u, v, w) \in K^{*}$ with $w=0$, the point satisfies $u=0$ and $v \geq 0$. Moreover, argue that $\{(0, v, 0): v \geq 0\} \subset K^{*}$.
(d) (2 points) Show that for any $(u, v, w) \in K^{*}$ with $w>0$ and $u=0$, the point satisfies $v \geq 0$. Moreover, argue that $\{(0, v, 0): v \geq 0\} \subset K^{*}$. Moreover, argue that $\{(0, v, w): v \geq 0, w>0\} \subset K^{*}$.
(e) (2 points) Show that for any $(u, v, w) \in K^{*}$ with $w>0$ and $u \neq 0$, the point satisfies $u<0$.
(f) (4 points) Finish the proof that the dual cone of $K$ from part (b) is given by

$$
K^{*}=\{(u, v, w): u<0,-u \exp (v / u) \leq \exp (1) w\} \cup\{(0, v, w): v, w \geq 0\}
$$

[Hint: argue that if $w>0$ and $u<0$, then $-u \exp v / u \leq \exp (1) w$ holds. You can use the fact (without proof) that minimizers of a differentiable convex function $f: \mathbb{R} \rightarrow \mathbb{R}$ occur at points where $f^{\prime}(x)=0$. We prove a more general version of this in lectures.]
6. This question asks you to show that the following matrix functions are norms. Note that matrices $A$ we take are not necessarily square matrices.
(a) (5 points) The spectral norm of a (real) matrix:

$$
\|A\|_{2}=\sqrt{\lambda_{\max }\left(A^{\top} A\right)}
$$

where $\lambda_{\max }\left(A^{\top} A\right)$ is the largest eigenvalue of $A^{\top} A$.
(b) (5 points) The Frobenius norm of a matrix:

$$
\|A\|_{F}=\sqrt{\operatorname{tr}\left\{A^{\top} A\right\}}
$$

where $\operatorname{tr}\left\{A^{\top} A\right\}$ is the trace of $A^{\top} A$, defined by, the sum of diagonal entries of $A^{\top} A$.
(c) (10 points) The nuclear norm of a symmetric matrix $S \in \mathbb{S}^{d \times d}$

$$
\|S\|_{\mathrm{nuc}}=\sum_{i=1}^{d} \sqrt{\lambda_{i}\left(S^{\top} S\right)}
$$

where $\lambda_{1}\left(S^{\top} S\right), \ldots, \lambda_{d}\left(S^{\top} S\right)$ are the eigenvalues of $S^{\top} S$.

