1 Outline

In this lecture, we study

- Fourier-Motzkin elimination,
- Farkas' lemma,
- Linear, convex, conic, affine combinations,
- Minkowski-Weyl theorem for cones.

2 Fourier-Motzkin elimination

We learned how to test the feasibility of $A x=b$ with $x \in \mathbb{Z}^{d}$. The essential idea was to convert the equality system $A x=b$ to another system with the Hermite normal form of A. Then checking the integrality of a solution boils down to simply enumerating and checking some components of a vector. In this section, we study how to check the feasibility of a system of linear inequalities:

$$
A x \leq b, \quad x \in \mathbb{R}^{d} .
$$

Here, x contains continuous variables, so the feasibility problem is relevant to linear programming. Writing out the matrix inequality into linear inequalities, we have

$$
\sum_{j=1}^{d-1} a_{i j} x_{j}+a_{i d} x_{d} \leq b_{i}, \quad i=1, \ldots, m
$$

where we separate out the last variable from the sum. We will use the Fourier-Motzkin elimination method to eliminate variable x_{d} from the inequalities. Basically, the idea is that if $A x \leq b$ has a feasible solution, then the system obtained after eliminating one variable by Fourier-Motzkin elimination would also have a solution. The resulting system has one less variable than the original system. As we continue this procedure, we would obtain an inequality system with no variable, such as $0 \leq 2$, we can check whose feasibility immediately.

Before we explain the method in general, let us consider a small example.
Example 9.1. Consider the following system of linear inequalities

$-x_{1}$	$-x_{2}$		≤ 2
x_{1}		$-x_{3}$	≤ 0
	x_{2}	$-x_{3}$	≤ 0
x_{1}	$+x_{2}$	$+x_{3}$	≤ 4

By adding up the second and the last inequalities, we obtain $2 x_{1}+x_{2} \leq 4$, and by adding up the third and the last inequalities, we obtain $x_{1}+2 x_{2} \leq 4$. Hence, we deduce

$$
\begin{array}{ccc}
-x_{1} & -x_{2} & \leq 2 \\
2 x_{1} & +x_{2} & \leq 4 \\
x_{1} & +2 x_{2} & \leq 4
\end{array}
$$

that does not contain variable x_{3}.

The basic idea is Fourier-Motzkin elimination is aggregating inequalities.

1. Fix a variable to eliminate.
2. Take an inequality with a positive coefficient of the variable and an inequality with a negative coefficient.
3. Deduce an inequality by adding up the two inequalities.

Let $\left(I^{0}, I^{+}, I^{-}\right)$be a partition of $[m]$ defined as follows.

$$
\begin{aligned}
& I^{0}=\{i \in[m]: \\
& I^{+}=\{i \in[m]: \\
&\left.a_{i d}=0\right\} \\
& I^{-}=\{i \in[m]: \\
&\left.a_{i d}>0\right\}
\end{aligned}
$$

Let $i_{1} \in I^{+}$and $i_{2} \in I^{-}$. Then we deduce the following two inequalities.

$$
\begin{gathered}
\sum_{j=1}^{d-1} \frac{a_{i_{1} j}}{a_{i_{1} d}} x_{j}+x_{d} \leq \frac{b_{i_{1}}}{a_{i_{1} d}} \\
\sum_{j=1}^{d-1} \frac{a_{i_{2} j}}{-a_{i_{2} d}} x_{j}-x_{d} \leq \frac{b_{i_{2}}}{-a_{i_{2} d}}
\end{gathered}
$$

Adding up these two inequalities, we obtain

$$
\sum_{j=1}^{d-1}\left(\frac{a_{i_{1} j}}{a_{i_{1} d}}-\frac{a_{i_{2} j}}{a_{i_{2} d}}\right) x_{j} \leq \frac{b_{i_{1}}}{a_{i_{1} d}}-\frac{b_{i_{2}}}{a_{i_{2} d}}
$$

Applying this procedure for every pair of $i_{1} \in I^{+}$and $i_{2} \in I^{-}$, we deduce the following system of linear inequalities.

$$
\begin{gather*}
\sum_{j=1}^{d-1} a_{i j} x_{j} \leq b_{i}, \quad i \in I^{0} \\
\sum_{j=1}^{d-1}\left(\frac{a_{i_{1} j}}{a_{i_{1} d}}-\frac{a_{i_{2} j}}{a_{i_{2} d}}\right) x_{j} \leq \frac{b_{i_{1}}}{a_{i_{1} d}}-\frac{b_{i_{2}}}{a_{i_{2} d}}, \quad i_{1} \in I^{+}, i_{2} \in I^{-} \tag{9.1}
\end{gather*}
$$

Theorem 9.2. $\left(\bar{x}_{1}, \ldots, \bar{x}_{d-1}\right)$ satisfies (9.1) if and only if $\left(\bar{x}_{1}, \ldots, \bar{x}_{d-1}, \bar{x}_{d}\right)$ satisfies $A x \leq b$ for some \bar{x}_{d}. Hence, the system (9.1) has a feasible solution if and only if $A x \leq b$ has a feasible solution.

Proof. (\Leftarrow) We showed that if $A x \leq b$ holds, then (9.1) holds. Hence, if \bar{x} satisfies $A x \leq b$, then $\tilde{x}:=\left(\bar{x}_{1}, \ldots, \bar{x}_{d-1}\right)$ satisfies (9.1), in which case \tilde{x} is a feasible solution to (9.1).
(\Rightarrow) Let $\tilde{x}:=\left(\bar{x}_{1}, \ldots, \bar{x}_{d-1}\right)$ be a solution satisfying (9.1). Then for every pair of $i_{1} \in I^{+}$and $i_{2} \in I^{-}$, we have

$$
\frac{b_{i_{2}}}{a_{i_{2} d}}-\sum_{j=1}^{d-1} \frac{a_{i_{2} j}}{a_{i_{2} d}} \bar{x}_{j} \leq \frac{b_{i_{1}}}{a_{i_{1} d}}-\sum_{j=1}^{d-1} \frac{a_{i_{1} j}}{a_{i_{1} d}} \bar{x}_{j}
$$

In particular,

$$
\max _{i_{2} \in I^{-}}\left\{\frac{b_{i_{2}}}{a_{i_{2} d}}-\sum_{j=1}^{d-1} \frac{a_{i_{2 j} j}}{a_{i_{2} d}} \bar{x}_{j}\right\} \leq \min _{i_{1} \in I^{+}}\left\{\frac{b_{i_{1}}}{a_{i_{1} d}}-\sum_{j=1}^{d-1} \frac{a_{i_{1} j}}{a_{i_{1} d}} \bar{x}_{j}\right\} .
$$

Let us choose \bar{x}_{d} between the left-hand side value and the right-hand side value, i.e.,

$$
\max _{i_{2} \in I^{-}}\left\{\frac{b_{i_{2}}}{a_{i_{2} d}}-\sum_{j=1}^{d-1} \frac{a_{i_{2 j} j}}{a_{i_{2} d}} \bar{x}_{j}\right\} \leq \bar{x}_{d} \leq \min _{i_{1} \in I^{+}}\left\{\frac{b_{i_{1}}}{a_{i_{1} d}}-\sum_{j=1}^{d-1} \frac{a_{i_{1} j}}{a_{i_{1} d}} \bar{x}_{j}\right\} .
$$

In this case,

$$
\begin{aligned}
& a_{i_{1} d} \bar{x}_{d} \leq b_{i_{1}}-\sum_{j=1}^{d-1} a_{i_{1} j} \bar{x}_{j}, \quad i_{1} \in I^{+} \\
& b_{i_{2}}-\sum_{j=1}^{d-1} a_{i_{2} j} \bar{x}_{j} \geq a_{i_{2} d} \bar{x}_{d}, \quad i_{2} \in I^{-}
\end{aligned}
$$

Therefore, $\bar{x}=\left(\bar{x}_{1}, \ldots, \bar{x}_{d-1}, \bar{x}_{d}\right)$ satisfies the system $A x \leq b$, as required.

```
Algorithm 1 Fourier-Motzkin elimination procedure
Input : \(A, b\).
\(A^{d} \leftarrow A, b^{d} \leftarrow b\).
Eliminate variable \(x_{d}\) as above to get \(A^{d-1} x \leq b^{d-1}\) where the column for variable \(x_{d}\) is 0 .
Continue until \(A^{0} x \leq b^{0}\) where \(A^{0}=0\).
```

Corollary 9.3. System $A x \leq b$ has a feasible solution if and only if $b^{0} \geq 0$ where b^{0} is given in Algorithm 1.

With the Fourier-Motzkin elimination method, we can prove the following famous result of Farkas on checking the feasibility of linear system.

Theorem 9.4 (Farkas' lemma). System $A x \leq b$ is infeasible if and only if the system $\lambda^{\top} A=0$, $\lambda^{\top} b<0$, and $\lambda \geq 0$ is feasible.

Proof. (\Leftarrow) Suppose that $A x \leq b$ is feasible for a contradiction. As $\lambda \geq 0$, we have

$$
\lambda^{\top} A x \leq \lambda^{\top} b .
$$

Moreover, as $\lambda^{\top} A=0$ and $\lambda^{\top} b<0$, we deduce that

$$
0=\lambda^{\top} A x \leq \lambda^{\top} b<0,
$$

a contradiction. Therefore, $A x \leq b$ is infeasible.
(\Rightarrow) Assume that $A x \leq b$ is infeasible. By Corollary 9.3, applying Fourier-Motzkin elimination results in $0 \leq b^{0}$ which is infeasible. Then $b_{i}^{0}<0$ for some component i. Notice that what FourierMotzkin elimination does is to multiply inequalities by some positive numbers and add up the resulting inequalities. Hence, the Fourier-Motzkin elimination procedure can be mimicked by some nonnegative multiplier vector $\lambda \geq 0$ so that $\lambda^{\top} A=0$ and $\lambda^{\top} b=b_{i}^{0}$. As b_{i}^{0}, we have $\lambda^{\top} b<0$, as required.

3 Linear, convex, conic, and affine combinations

Let $v^{1}, \ldots, v^{k} \in \mathbb{R}^{d}$ be d-dimensional vectors. A linear combination of the vectors is

$$
\sum_{i=1}^{k} \alpha_{k} v^{k}
$$

for some $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$. We say that vectors v^{1}, \ldots, v^{k} are linearly independent if $\sum_{i=1}^{k} \alpha_{k} v^{k}=$ 0 has a unique solution $\alpha_{1}=\cdots=\alpha_{k}=0$. Otherwise, we say that the vectors are linearly dependent.
We call $V \subseteq \mathbb{R}^{d}$ a linear subspace if V is closed under taking linear combinations. The dimension of a linear subspace V is defined as the maximum number of linearly independent vectors in V. A basis of a linear subspace V is a maximal set of linearly independent vectors in V.
A linear combination $\lambda_{1} v^{1}+\cdots+\lambda_{k} v^{k}$ of vectors $v^{1}, \ldots, v^{k} \in \mathbb{R}^{d}$ is a convex combination if

$$
\sum_{i=1}^{k} \lambda_{i}=1 \quad \text { and } \quad \lambda_{i} \geq 0 \text { for } i=1, \ldots, k
$$

A linear combination $\beta_{1} v^{1}+\cdots+\beta_{k} v^{k}$ of vectors $v^{1}, \ldots, v^{k} \in \mathbb{R}^{d}$ is a conic combination if

$$
\beta_{1}, \ldots, \beta_{k} \geq 0
$$

In other words, any nonnegative linear combination is a conic combination. A set $C \subseteq \mathbb{R}^{d}$ is a cone if for any $v \in C$ and $\alpha>0$, we have $\alpha v \in C$. Furthermore, if a cone C contains every conic combination of vectors in C, then it is called a convex cone. The conic hull of a set X, denoted cone (X), is the set of all conic combinations of points in X. By definition,

$$
\operatorname{cone}(X)=\left\{\sum_{i=1}^{n} \lambda_{i} v^{i}: \begin{array}{l}
n \in \mathbb{N}, v^{1}, \ldots, v^{n} \in X, \\
\beta_{1}, \ldots, \beta_{n} \geq 0
\end{array}\right\} .
$$

As $\operatorname{conv}(X), \operatorname{cone}(X)$ is always convex. Figure 9.1 shows an example taking the conic hull of a set in \mathbb{R}^{2}. A linear combination $\theta_{1} v^{1}+\cdots+\theta_{k} v^{k}$ of vectors $v^{1}, \ldots, v^{k} \in \mathbb{R}^{d}$ is a affine combination

Figure 9.1: Taking the conic hull of a triangle in \mathbb{R}^{2}
if

$$
\theta_{1}+\cdots+\theta_{k}=1
$$

In contrast to covex combinations, affine combinations allow negative multipliers. The affine hull of a set X is the set of all affine combinations of points in X. The affine hull of X is also referred to as the affine subspace spanned by X.

We say that vectors v^{1}, \ldots, v^{k} are affinely independent if

$$
\sum_{i=1}^{k} \theta_{i} v^{i}=0, \quad \sum_{i=1}^{k} \theta_{i}=0
$$

has a unique solution $\theta_{1}=\cdots=\theta_{k}=0$. The dimension of any set S, denoted $\operatorname{dim}(S)$, is defined as the maximum number of affinely independent vectors in S minus 1 .
In Figure 9.2, we have a set S of two points in \mathbb{R}^{2}. The red line segment is $\operatorname{conv}(S)$, the green line through the two points is the affine subspace spanned by S, the blue cone depicts cone (S), and lastly, the orange regin (in fact, \mathbb{R}^{2}) is the linear subspace spanned by S.

Figure 9.2: Comparing the linear subspace, the affine subspace, the convex hull, and the conic hull

Theorem 9.5. An affine subspace is a translation of a linear subspace. For an affine subspace $V \subseteq \mathbb{R}^{d}$, there exist matrices A and b such that $V=\left\{x \in \mathbb{R}^{d}: A x=b\right\}$.

4 Minkowski-Weyl theorem for cones

A set $C \subseteq \mathbb{R}^{d}$ is a polyhedral cone if it is defined by a finite number of half-spaces whose boundaries go through the origin, i.e,

$$
C=\left\{x \in \mathbb{R}^{d}: A x \leq 0\right\} .
$$

Theorem 9.6 (Minkowski-Weyl theorem for cones). A set $C \subseteq \mathbb{R}^{d}$ is a polyhedral cone if and only if

$$
C=\operatorname{cone}\left(r^{1}, \ldots, r^{k}\right)
$$

for some vectors r^{1}, \ldots, r^{k}.
Proof. We prove direction (\Leftarrow) using Fourier-Motzkin elimination. For the other direction, we refer to the book.

As C is the conic hull of r^{1}, \ldots, r^{k}, we have

$$
C=\left\{x \in \mathbb{R}^{d}: \exists \mu \geq 0 \text { s.t. } x=\sum_{i=1}^{k} \mu_{i} r^{i}\right\} .
$$

Let R be the $d \times k$ matrix whose columns are r^{1}, \ldots, r^{k}. Then C can be written as

$$
C=\left\{x \in \mathbb{R}^{d}: \exists \mu \geq 0 \text { s.t. } x=R \mu\right\} .
$$

Then C is defined by the system

$$
x-R \mu=0, \quad \mu \geq 0 .
$$

By applying Fourier-Motzkin elimination, we may eliminate variables μ and deduce system $A x \leq b$. Then it follows from Theorem 9.2 that

$$
C=\left\{x \in \mathbb{R}^{d}: A x \leq b\right\} .
$$

Here, the original system given by $x-R \mu=0$ and $\mu \geq 0$ has all its right-hand sides 0 . Then any sytem obtained after Fourier-Motzkin elimination also has right-hand sides 0 . Therefore, $b=0$ and C is defined by $A x \leq 0$. Therefore, C is a polyhedral cone.

Theorem 9.6 has the following immediate consequences.

- Given a matrix A, there exists a finite set of vectors r^{1}, \ldots, r^{k} such that $\left\{x \in \mathbb{R}^{d}: A x \leq 0\right\}=$ cone $\left(r^{1}, \ldots, r^{k}\right)$.
- Given a finite set of vectors r^{1}, \ldots, r^{k}, there exists a matrix A such that cone $\left(r^{1}, \ldots, r^{k}\right)=$ $\left\{x \in \mathbb{R}^{d}: A x \leq 0\right\}$.

