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1 Outline

In this lecture, we study

• Fourier-Motzkin elimination,

• Farkas’ lemma,

• Linear, convex, conic, affine combinations,

• Minkowski-Weyl theorem for cones.

2 Fourier-Motzkin elimination

We learned how to test the feasibility of Ax = b with x ∈ Zd. The essential idea was to convert
the equality system Ax = b to another system with the Hermite normal form of A. Then checking
the integrality of a solution boils down to simply enumerating and checking some components of a
vector. In this section, we study how to check the feasibility of a system of linear inequalities:

Ax ≤ b, x ∈ Rd.

Here, x contains continuous variables, so the feasibility problem is relevant to linear programming.
Writing out the matrix inequality into linear inequalities, we have

d−1∑
j=1

aijxj + aidxd ≤ bi, i = 1, . . . ,m

where we separate out the last variable from the sum. We will use the Fourier-Motzkin elimi-
nation method to eliminate variable xd from the inequalities. Basically, the idea is that if Ax ≤ b
has a feasible solution, then the system obtained after eliminating one variable by Fourier-Motzkin
elimination would also have a solution. The resulting system has one less variable than the original
system. As we continue this procedure, we would obtain an inequality system with no variable,
such as 0 ≤ 2, we can check whose feasibility immediately.

Before we explain the method in general, let us consider a small example.

Example 9.1. Consider the following system of linear inequalities

−x1 −x2 ≤ 2
x1 −x3 ≤ 0

x2 −x3 ≤ 0
x1 +x2 +x3 ≤ 4

By adding up the second and the last inequalities, we obtain 2x1 + x2 ≤ 4, and by adding up the
third and the last inequalities, we obtain x1 + 2x2 ≤ 4. Hence, we deduce

−x1 −x2 ≤ 2
2x1 +x2 ≤ 4
x1 +2x2 ≤ 4

that does not contain variable x3.
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The basic idea is Fourier-Motzkin elimination is aggregating inequalities.

1. Fix a variable to eliminate.

2. Take an inequality with a positive coefficient of the variable and an inequality with a negative
coefficient.

3. Deduce an inequality by adding up the two inequalities.

Let (I0, I+, I−) be a partition of [m] defined as follows.

I0 = {i ∈ [m] : aid = 0},
I+ = {i ∈ [m] : aid > 0},
I− = {i ∈ [m] : aid < 0}.

Let i1 ∈ I+ and i2 ∈ I−. Then we deduce the following two inequalities.

d−1∑
j=1

ai1j
ai1d

xj + xd ≤
bi1
ai1d

d−1∑
j=1

ai2j
−ai2d

xj − xd ≤
bi2
−ai2d

.

Adding up these two inequalities, we obtain

d−1∑
j=1

(
ai1j
ai1d
− ai2j

ai2d

)
xj ≤

bi1
ai1d
− bi2

ai2d
.

Applying this procedure for every pair of i1 ∈ I+ and i2 ∈ I−, we deduce the following system of
linear inequalities.

d−1∑
j=1

aijxj ≤ bi, i ∈ I0,

d−1∑
j=1

(
ai1j
ai1d
− ai2j

ai2d

)
xj ≤

bi1
ai1d
− bi2

ai2d
, i1 ∈ I+, i2 ∈ I−.

(9.1)

Theorem 9.2. (x̄1, . . . , x̄d−1) satisfies (9.1) if and only if (x̄1, . . . , x̄d−1, x̄d) satisfies Ax ≤ b for
some x̄d. Hence, the system (9.1) has a feasible solution if and only if Ax ≤ b has a feasible
solution.

Proof. (⇐) We showed that if Ax ≤ b holds, then (9.1) holds. Hence, if x̄ satisfies Ax ≤ b, then
x̃ := (x̄1, . . . , x̄d−1) satisfies (9.1), in which case x̃ is a feasible solution to (9.1).

(⇒) Let x̃ := (x̄1, . . . , x̄d−1) be a solution satisfying (9.1). Then for every pair of i1 ∈ I+ and
i2 ∈ I−, we have

bi2
ai2d
−

d−1∑
j=1

ai2j
ai2d

x̄j ≤
bi1
ai1d
−

d−1∑
j=1

ai1j
ai1d

x̄j .
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In particular,

max
i2∈I−

 bi2
ai2d
−

d−1∑
j=1

ai2j
ai2d

x̄j

 ≤ min
i1∈I+

 bi1
ai1d
−

d−1∑
j=1

ai1j
ai1d

x̄j

 .

Let us choose x̄d between the left-hand side value and the right-hand side value, i.e.,

max
i2∈I−

 bi2
ai2d
−

d−1∑
j=1

ai2j
ai2d

x̄j

 ≤ x̄d ≤ min
i1∈I+

 bi1
ai1d
−

d−1∑
j=1

ai1j
ai1d

x̄j

 .

In this case,

ai1dx̄d ≤ bi1 −
d−1∑
j=1

ai1j x̄j , i1 ∈ I+

bi2 −
d−1∑
j=1

ai2j x̄j ≥ ai2dx̄d, i2 ∈ I−

Therefore, x̄ = (x̄1, . . . , x̄d−1, x̄d) satisfies the system Ax ≤ b, as required.

Algorithm 1 Fourier-Motzkin elimination procedure

Input : A, b.
Ad ← A, bd ← b.
Eliminate variable xd as above to get Ad−1x ≤ bd−1 where the column for variable xd is 0.
Continue until A0x ≤ b0 where A0 = 0.

Corollary 9.3. System Ax ≤ b has a feasible solution if and only if b0 ≥ 0 where b0 is given in
Algorithm 1.

With the Fourier-Motzkin elimination method, we can prove the following famous result of Farkas
on checking the feasibility of linear system.

Theorem 9.4 (Farkas’ lemma). System Ax ≤ b is infeasible if and only if the system λ⊤A = 0,
λ⊤b < 0, and λ ≥ 0 is feasible.

Proof. (⇐) Suppose that Ax ≤ b is feasible for a contradiction. As λ ≥ 0, we have

λ⊤Ax ≤ λ⊤b.

Moreover, as λ⊤A = 0 and λ⊤b < 0, we deduce that

0 = λ⊤Ax ≤ λ⊤b < 0,

a contradiction. Therefore, Ax ≤ b is infeasible.

(⇒) Assume that Ax ≤ b is infeasible. By Corollary 9.3, applying Fourier-Motzkin elimination
results in 0 ≤ b0 which is infeasible. Then b0i < 0 for some component i. Notice that what Fourier-
Motzkin elimination does is to multiply inequalities by some positive numbers and add up the
resulting inequalities. Hence, the Fourier-Motzkin elimination procedure can be mimicked by some
nonnegative multiplier vector λ ≥ 0 so that λ⊤A = 0 and λ⊤b = b0i . As b0i , we have λ⊤b < 0, as
required.
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3 Linear, convex, conic, and affine combinations

Let v1, . . . , vk ∈ Rd be d-dimensional vectors. A linear combination of the vectors is

k∑
i=1

αkv
k

for some α1, . . . , αk ∈ R. We say that vectors v1, . . . , vk are linearly independent if
∑k

i=1 αkv
k =

0 has a unique solution α1 = · · · = αk = 0. Otherwise, we say that the vectors are linearly
dependent.

We call V ⊆ Rd a linear subspace if V is closed under taking linear combinations. The dimension
of a linear subspace V is defined as the maximum number of linearly independent vectors in V . A
basis of a linear subspace V is a maximal set of linearly independent vectors in V .

A linear combination λ1v
1 + · · ·+ λkv

k of vectors v1, . . . , vk ∈ Rd is a convex combination if

k∑
i=1

λi = 1 and λi ≥ 0 for i = 1, . . . , k.

A linear combination β1v
1 + · · ·+ βkv

k of vectors v1, . . . , vk ∈ Rd is a conic combination if

β1, . . . , βk ≥ 0.

In other words, any nonnegative linear combination is a conic combination. A set C ⊆ Rd is a
cone if for any v ∈ C and α > 0, we have αv ∈ C. Furthermore, if a cone C contains every conic
combination of vectors in C, then it is called a convex cone. The conic hull of a set X, denoted
cone(X), is the set of all conic combinations of points in X. By definition,

cone(X) =

{
n∑

i=1

λiv
i :

n ∈ N, v1, . . . , vn ∈ X,

β1, . . . , βn ≥ 0

}
.

As conv(X), cone(X) is always convex. Figure 9.1 shows an example taking the conic hull of a set
in R2. A linear combination θ1v

1 + · · ·+ θkv
k of vectors v1, . . . , vk ∈ Rd is a affine combination

Figure 9.1: Taking the conic hull of a triangle in R2

if
θ1 + · · ·+ θk = 1.

4



In contrast to covex combinations, affine combinations allow negative multipliers. The affine hull
of a set X is the set of all affine combinations of points in X. The affine hull of X is also referred
to as the affine subspace spanned by X.

We say that vectors v1, . . . , vk are affinely independent if

k∑
i=1

θiv
i = 0,

k∑
i=1

θi = 0

has a unique solution θ1 = · · · = θk = 0. The dimension of any set S, denoted dim(S), is defined
as the maximum number of affinely independent vectors in S minus 1.

In Figure 9.2, we have a set S of two points in R2. The red line segment is conv(S), the green line
through the two points is the affine subspace spanned by S, the blue cone depicts cone(S), and
lastly, the orange regin (in fact, R2) is the linear subspace spanned by S.

Figure 9.2: Comparing the linear subspace, the affine subspace, the convex hull, and the conic hull

Theorem 9.5. An affine subspace is a translation of a linear subspace. For an affine subspace
V ⊆ Rd, there exist matrices A and b such that V = {x ∈ Rd : Ax = b}.

4 Minkowski-Weyl theorem for cones

A set C ⊆ Rd is a polyhedral cone if it is defined by a finite number of half-spaces whose
boundaries go through the origin, i.e,

C = {x ∈ Rd : Ax ≤ 0}.

Theorem 9.6 (Minkowski-Weyl theorem for cones). A set C ⊆ Rd is a polyhedral cone if and only
if

C = cone(r1, . . . , rk)

for some vectors r1, . . . , rk.

Proof. We prove direction (⇐) using Fourier-Motzkin elimination. For the other direction, we
refer to the book.
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As C is the conic hull of r1, . . . , rk, we have

C =

{
x ∈ Rd : ∃µ ≥ 0 s.t. x =

k∑
i=1

µir
i

}
.

Let R be the d× k matrix whose columns are r1, . . . , rk. Then C can be written as

C =
{
x ∈ Rd : ∃µ ≥ 0 s.t. x = Rµ

}
.

Then C is defined by the system
x−Rµ = 0, µ ≥ 0.

By applying Fourier-Motzkin elimination, we may eliminate variables µ and deduce system Ax ≤ b.
Then it follows from Theorem 9.2 that

C =
{
x ∈ Rd : Ax ≤ b

}
.

Here, the original system given by x− Rµ = 0 and µ ≥ 0 has all its right-hand sides 0. Then any
sytem obtained after Fourier-Motzkin elimination also has right-hand sides 0. Therefore, b = 0 and
C is defined by Ax ≤ 0. Therefore, C is a polyhedral cone.

Theorem 9.6 has the following immediate consequences.

• Given a matrix A, there exists a finite set of vectors r1, . . . , rk such that {x ∈ Rd : Ax ≤ 0} =
cone(r1, . . . , rk).

• Given a finite set of vectors r1, . . . , rk, there exists a matrix A such that cone(r1, . . . , rk) =
{x ∈ Rd : Ax ≤ 0}.
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