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1 Outline

In this lecture, we study

• inventory planning and mixing set,

• chance-constrained programs,

• union of polytopes.

2 Inventory planning: Mixing set

We consider a two-stage inventory planning problem. A retail store prepares some inventory of
items before the market opens, and the retail store can observe the actual demand after the market
opens. If the prepared amount of items is not enough for satisfying the demand, then the retail
store can urgently secure more items at a higher cost.

• y: the amount of items that the retail store prepares before the market opens.

• h: the unit cost of preparing items before the market opens.

• b: the stochastic demand for items.

• c: the unit cost of securing more items after the market opens.

Assumption 1. Before the market opens, we may prepare a fractional quantity, i.e., y can be
fractional. However, securing items after the market opens is more restrictive, and the extra order
should be of an integer quantity.

Given that the inventory of items is y and the demand is b, we define f(y, b) as the minimum
amount of extra orders after the market opens. Then f(y, b) is given by

f(y, b) = min{z : y + z ≥ b, z ∈ Z+}.

The problem is to decide the order quantities before and after the market opens so as to satisfy the
market demand while minimizing the total cost. The problem can be modeled by

min
y

hy + c · Eb [f(y, b)] .

Assumption 2. There are n possibilities, given by b1, . . . , bn, for the stochastic demand b. Histor-
ically, the demand is equal to value bi with probability pi, i.e.,

P [b = bi] = pi.

Here, p1, . . . , pn ≥ 0 and
∑n

i=1 pi = 1. We assume that the probability distribution is known to the
decision-maker.
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Based on this assumption, the problem is equivalent to

min
y

hy + c
n∑

i=1

pif(y, bi).

As f(y, bi) itself is defined by an optimization problem, the problem can be written as

min
y

hy + c

n∑
i=1

pi ·min{z : y + z ≥ bi, z ∈ Z+}.

This type of problem is called a two-stage optimization model. Here, y is called the first-stage
decision variable, and z is called the second-stage decision variable. Moreover, each case
of demand realization is called a scenario. There are n scenarios, and scenario i occurs with
probability pi.

In fact, we may reformulate the two-stage optimization model as a single optimization problem as
follows. For each scenario, we use variable xi to replace z. Then we deduce

min
y

hy + c

n∑
i=1

pi ·min{xi : y + xi ≥ bi, xi ∈ Z+}.

Note that the inner optimization problem is also a minimization problem. Then we may optimize
over both the first-stage and second-stage variables simultaneously. To be specific, the following is
an equivalent reformulation of the problem.

min hy + c
n∑

i=1

pixi

s.t. y + xi ≥ bi, i = 1, . . . , n,

y ∈ R+, x ∈ Zn
+.

The solution set of this model{
(y, x) ∈ R+ × Zn

+ : y + xi ≥ bi, i = 1, . . . , n
}

is called the mixing set [GP01]. The convex hull of the mixing set is well-understood.

Theorem 8.1 ([GP01]). The convex hull of the mixing set is described by the mixing inequalities.
Although the number of mixing inequalities is exponential in n, we may separate a violated mixing
inequality in polynomial time.

3 Chance-constrained programs

Let us consider the previous inventory planning setting again. In the previous section, we allowed
ordering more items after the market opens. However, in this section, we assume that no purchase
can be made after the market opens. Therefore, the decision-maker has to prepare enough quantity
of items before the market opens, based on the distribution of the stochastic demand.

The first attempt is to prepare again all possible scenarios. Basically, we target the largest possible
demand by solving

min hy

s.t. y ≥ bi, i = 1, . . . , n,

y ∈ R+.
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However, targeting the largest possible demand may be a too conservative decision. Maybe the
largest possible demand value occurs with probability less than 0.1% while we would face a moderate
demand level with proability in most cases. How do we take this into account? Let us consider

min hy

s.t. P [y ≥ b] ≥ 0.95

y ∈ R+.

This optimization model is called a chance-constrained program. Note that the constraint
requires that we satisfy the stochastic demand with at least 95% chance. We might not satisfy the
demand in some cases, but as long as the failure probability is at most 5%, we hare happy.

In fact, the chance-constrained program can be reformulated as an integer program. Note that

P [y ≥ b] ≥ 0.95

is equivalent to
P [y < b] ≤ 0.05.

Moreover,

P [y < b] =
n∑

i=1

pi · 1 [y < bi]

where

1 [y < bi] =

{
1, if y < bi,

0, otherwise.

Let

zi =

{
0, if the demand for scenario i is satisfied,

1, otherwise.

Basically, we use the binary variable zi to model the indicator function 1 [y < bi]. Then the chance-
constrained program can be reformulated as the following integer program.

min hy

s.t. y + bizi ≥ bi, i = 1, . . . , n,
n∑

i=1

pizi ≤ 0.05,

y ∈ R+, z ∈ {0, 1}n.

The solution set of this model{
(y, x) ∈ R+ × Zn

+ : y + xi ≥ bi, i = 1, . . . , n
}

is called the binary mixing set [LAN10]. The convex hull of the mixing set is also well-understood.

Theorem 8.2 ([ANS00, LAN10]). The convex hull of the binary mixing set is described by the
mixing inequalities. Although the number of mixing inequalities is exponential in n, we may
separate a violated mixing inequality in O(n log n) time.
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4 Union of polytopes

Consider the inventory planning problem again. What if the second-stage order quantity cannot
be an arbitrary integer but can be chosen from some fixed list of options? Suppose that the
second-stage order quantity z satisfies

z ∈ {q1, . . . , qℓ}.

Moreover, assume that the demand is fixed and known to be b. In this case, the corresponding
optimization model would be

min hy + cz

s.t. y + z ≥ b

y ∈ R+, z ∈ {q1, . . . , qℓ}.

Note that the feasible region is the union of ℓ sets given by

Qj = {(y, z) ∈ R× R : y + z ≥ b, y ≥ 0, z = qj} .

In other words, the optimization model is equivalent to

min hy + cz

s.t. (y, z) ∈
ℓ⋃

j=1

Qj .

Here, since hy + cz is linear and therefore convex, the optimization problem is equivalent to

min hy + cz

s.t. (y, z) ∈ conv

 ℓ⋃
j=1

Qj

 .

Note that each Qj is a polyhedron. How do we obtain the convex hull of the ℓ polyhedra?

In general, consider k polyhedra given by

Pi =
{
x ∈ Rd : Aix ≤ bi

}
for i = 1, . . . , k.

Assumption 3. P1, . . . , Pk are all bounded and nonempty.

Note that we can make each Qj bounded, because we know that the optimal value of y is at most
b. Hence, the question is as to how we model

k⋃
i=1

Pi and conv

(
k⋃

i=1

Pi

)
.

Since P1, . . . , Pk are bounded, there exists a large constant M such that

Aix ≤ bi +M1
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Figure 8.1: Union of polytopes and its convex hull

is always satisfied for all x ∈ Rd and i ∈ [k]. Consider the following formulation.

Aix ≤ bi +M1(1− zi), i = 1, . . . , k

k∑
i=1

zi = 1,

z ∈ {0, 1}k,
x ∈ Rd.

(8.1)

Theorem 8.3. The set of vectors x satisfies the constraints in (8.1) with some z is the union of
P1, . . . , Pk.

This is called a big-M based formulation. Note that we would to use a large number for
M , which makes the corresponding LP relaxation weak. Instead of this formulation, we take the
following formulation.

Aixi ≤ bizi, i = 1, . . . , k

k∑
i=1

zi = 1,

k∑
i=1

xi = x,

z ∈ {0, 1}k.

(8.2)

Theorem 8.4. The set of vectors x satisfies the constraints in (8.2) with some z is the union of
P1, . . . , Pk.

It turns out that the second formulation is the tighest possible. Its relaxation is

Aixi ≤ bizi, i = 1, . . . , k

k∑
i=1

zi = 1,

k∑
i=1

xi = x,

z ∈ [0, 1]k.

(8.3)
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Theorem 8.5 ([Bal74]). The set of vectors x satisfies the constraints in (8.3) with some z is

conv

(
k⋃

i=1

Pi

)
,

the convex hull of the union of P1, . . . , Pk.

Proof. By the previous theorem, we have

k⋃
i=1

Pi =
{
x : ∃(x1, . . . , xk, z1, . . . , zk) such that (x, x1, . . . , xk, z1, . . . , zk) satisfies (8.2)

}
.

As (8.3) is a continuous relaxation of (8.2), it follows that

k⋃
i=1

Pi ⊆
{
x : ∃(x1, . . . , xk, z1, . . . , zk) such that (x, x1, . . . , xk, z1, . . . , zk) satisfies (8.3)

}
.

Here, the set on the right-hand side is convex, so

conv

(
k⋃

i=1

Pi

)
⊆
{
x : ∃(x1, . . . , xk, z1, . . . , zk) such that (x, x1, . . . , xk, z1, . . . , zk) satisfies (8.3)

}
.

Let x be a vector satisfying (8.3) together with some (x1, . . . , xk, z1, . . . , zk). Note that

(x, x1, . . . , xk, z1, . . . , zk) =
∑
i:zi ̸=0

zi

xi

zi
, 0, . . . , 0,

xi

zi
, 0, . . . , 0︸ ︷︷ ︸

ith entry is nonzero

, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
ith entry is nonzero


is a convex combination of points satisfying (8.2). This means that

x =
∑
i:zi ̸=0

zi ·
xi

zi
∈ conv

(
k⋃

i=1

Pi

)
.

Therefore,

conv

(
k⋃

i=1

Pi

)
⊇
{
x : ∃(x1, . . . , xk, z1, . . . , zk) such that (x, x1, . . . , xk, z1, . . . , zk) satisfies (8.3)

}
,

as required.
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