
IE 631 Integer Programming KAIST, Spring 2023
Lecture #7: Integer programming formulations II March 21, 2023
Lecturer: Dabeen Lee

1 Outline

In this lecture, we study

• the cutting stock problem,

• set packing, partitioning, and covering,

• stable set problem,

• st-paths and st-cuts,

• airline crew scheduling.

2 Cutting stock problem

A steel mill manages p steel plate production lines. Each line can produce large steel plate of
width W . The steel mill receives orders of different widths. Suppose that there are m different
orders of width values w1, . . . , wm. Assume also that the number of orders for width wi is bi for
i ∈ [m]. Upon receiving these orders, the steel mill decides how to allocate the production orders
over production lines. Basically, a steel plate of width W from a production line can be cut into
multiple plates of different widths. Here, the steel mill wants to run as few production lines as
possible.

To model this problem as an integer program, we use a binary variable yj to indicate whether
production line j ∈ [p] is on use or not.

yj =

{
1, if production line j is on operation

0, oterwise
.

Next, for the orders of width wi, we can allocate the bi orders over the production lines that are
being used. Then we use a nonnegative variable zij to encode the number of orders of width wi

allocated to production line j. Then the problem can be formulated as

min

p∑
j=1

yj

s.t.
m∑
i=1

wizij ≤ Wyj , ∀j ∈ [p],

p∑
j=1

zij ≥ bi, ∀i ∈ [m],

yj ∈ {0, 1}, ∀j ∈ [p],

zij ∈ Z+, ∀i ∈ [m], j ∈ [p].

1



Although this gives rise to a valid formulation, computational experiments show that it is not a
strong formulation.

Next we propose a different formulation. We use the idea of cutting patterns. The basic idea is
as follows. A cutting pattern determines how to cut a steel plate of width W into pieces of different
widths. A cutting pattern can be represented as a vector s ∈ Zm

+ where si represents the number
of pieces of width wi. To make sure that si pieces of width wi for i ∈ [m] can be produced from a
steel plate of width W , we impose a knapsack constraint as follows.

m∑
i=1

wisi ≤ W.

Then the set of nonnegative integer vectors satisfying the knapsack constraint, given by

S =

{
s ∈ Zm

+ :

m∑
i=1

wisi ≤ W

}

collects all possible cutting patterns. Essentially, using a cutting pattern is equivalent to operating
a production line.

Let xs denote the number of production lines that produce cutting pattern s. Then∑
s∈S

xs

is the total number of production lines in use. Moreover,∑
s∈S

sixs

is equal to the total number of pieces of width wi. Then the problem can be formulated as

min
∑
s∈S

xs

s.t.
∑
s∈S

sixs ≥ bi, ∀i ∈ [m],

xs ∈ Z+, ∀s ∈ S.

Here, the issue with this integer program is that the number of variables is equal to the number of
all possible cutting patterns. However, the number of possible patterns is the number of points in
S, which can be huge depending on the problem parameters. Instead of enumerating all cutting
patterns, we use the so-called column generation approach.

3 Set packing, covering, partitioning

Let E = {1, . . . , n} be a finite set of elements, and F = {F1, . . . , Fm} be a family of subsets of E.
Assume that each element e ∈ E has weight we ∈ R. A set S ⊆ E is said to be a packing of the
family F if S intersects every member of F at most once. The family of packings of F is given
by

S1 =

x ∈ {0, 1}n :
∑
j∈Fi

xj ≤ 1, ∀Fi ∈ F

 .

2



Here, we may represent S1 with a matrix inequality. Let A be the subset-element incidence matrix
of F , i.e., A is an m× n matrix with

aij =

{
1, if member i contains element j,

0, otherwise.

Then S1 can be rewritten as
S1 = {x ∈ {0, 1}n : Ax ≤ 1} .

The set packing problem is

max

{∑
e∈E

wexe : Ax ≤ 1, x ∈ {0, 1}n
}
. (7.1)

Conversely, for any m×n matrix A all whose entries are either 0 or 1, the problem of the form (7.1)
is the set packing problem for a family. In fact, this family corresponds to the rows of the 0,1
matrix A.

A set S ⊆ E is said to be a partitioning of the family F if S intersects every member of exactly
once. The family of partitionings of F is given by

S2 =

x ∈ {0, 1}n :
∑
j∈Fi

xj = 1, ∀Fi ∈ F


= {x ∈ {0, 1}n : Ax = 1} .

The set partitioning problem is

min

{∑
e∈E

wexe : Ax = 1, x ∈ {0, 1}n
}
.

A set S ⊆ E is said to be a covering of the family F if S intersects every member of F at least
once. The family of coverings of F is given by

S3 =

x ∈ {0, 1}n :
∑
j∈Fi

xj ≥ 1, ∀Fi ∈ F


= {x ∈ {0, 1}n : Ax ≥ 1} .

The set covering problem is

min

{∑
e∈E

wexe : Ax ≥ 1, x ∈ {0, 1}n
}
.

4 Stable set problem

Let G = (V,E) be an undirected graph with n vertices and m edges. A stable set or an inde-
pendent set of G is a set of nodes no two of which are adjacent. Figure 7.1 shows a graph on 5
vertices and two stable sets. The family of stable sets is given by

3



Figure 7.1: Stable sets of a graph

stab(G) = {x ∈ {0, 1}n : xi + xj ≤ 1, ∀{i, j} ∈ E} .

The stable set problem or the independent set problem is the problem of finding a maximum
weight stable set in G:

max

∑
j∈V

wjxj : xi + xj ≤ 1, ∀{i, j} ∈ E, x ∈ {0, 1}n
 .

where wv ∈ R is the weight of vertex v ∈ V . Note that the stable set problem is an instance of the
set packing problem where the vertex set V and the edge set E correspond to the elements and the
members, respectively.

The integer programming formulation for the stable set problem has constraints that correspond
to edges of G. In fact, we may strengthen the formulation based on a combinatorial property of a
stable set. A clique in a graph is a set of pairwise adjacent vertices. As any two vertices in a clique

Figure 7.2: Cliques a graph

are adjacent, a stable set intersects a clique with at most one vertex. This implies that inequality∑
j∈K

xj ≤ 1

for any clique K is valid for stab(G). This inequality is called a clique inequality. Note that
an edge itself is a clique, and therefore, the edge inequality xi + xj ≤ 1 is also a clique inequality.
Although all clique inequalities are valid for stab(G), the ones associated with maximal cliques
are non-redundant. A clique is maximal if it is a clique and there is no other clique that properly
contains it. Hence,

stab(G) =

x ∈ {0, 1}n :
∑
j∈K

xj ≤ 1, ∀K ∈ K


4



where K is the family of maximal cliques in G.

5 st-paths and st-cuts

Let G = (V,E) be a graph with two distinct vertices s and t. Let we ∈ R+ be the length of edge
e ∈ E in graph G. An st-path is a path in G that starts from s and ends at t. An st-cut is a set
of edges of the form

δ(S) = {{u, v} ∈ E : u ∈ S, v ̸∈ S}
where S ⊆ V contains s but not t. Here, δ(S) is the set of edges exactly one of whose two ends is
in S as in Figure 7.3.

Figure 7.3: An st-cut in G

Note that an st-path P must intersect an st-cut C. That means that if x ∈ {0, 1}E gives rise to an
st-path, then ∑

e∈C
xe ≥ 1

is valid for any st-cut C. It is known that

min
∑
e∈E

wexe

s.t.
∑
e∈C

xe ≥ 1, ∀st-cuts C,

xe ∈ {0, 1}, ∀e ∈ E

computes a minimum weight st-path. In fact, the LP relaxation given by

min
∑
e∈E

wexe

s.t.
∑
e∈C

xe ≥ 1, ∀st-cuts C,

0 ≤ xe ≤ 1, ∀e ∈ E

always reutrns an integral solution, meaning that this linear program computes a minimum weight
st-path. Moreover, the linear program

min
∑
e∈E

wexe

s.t.
∑
e∈C

xe ≥ 1, ∀st-paths P ,

0 ≤ xe ≤ 1, ∀e ∈ E

5



finds a minimum weight st-cuts.

6 Airline crew scheduling

An airline company operate flight schedules to which airline crews are assigned. An airline crew
can work for a certain number of hours on a day, so a crew may attend more than one flight on
a day. Based on labor regulations and restrictions, an airline can provide a possible list of daily
schedules that can be covered by a single crew. For example, a schedule may consist of

• the 8:30-10:00 am flight from Pittsburgh to Chicago,

• the 11:30am-1:30 pm flight from Chicago to Atalanta,

• the 2:45-4:30 pm flight from Atlanta to Pittsburgh.

Another possible schedule is

• the 6:00-9:00 am flight from Gimpo to Jeju,

• the 11:00am-1:00 pm flight from Jeju to Tokyo,

• the 4:00-6:00 pm flight from Tokyo to Gimpo.

We often refer to a schedule of multiple flights that can be covered by a single crew as a pairing.
Hence, the airline can take care of all its daily flights by pairings. Using a certain pairing of flights
corresponds to assigning a crew.

To determine the smallest number of crews to cover all daily flights, we use integer programming.
Suppose that there are m flights and n possible pairings of flights. Let A be an m× n matrix with

aij =

{
1, if pairing j covers flight i,

0, otherwise.

Next, binary variable xj indicates

xj =

{
1, if pairing j is used,

0, otherwise.

Note that a certain pairing j is associated with a cost, depending on its duration and the number
of flights, etc. Let wj be the cost of pairing j. Then

min

n∑
j=1

wjxj

s.t.

n∑
j=1

aijxj ≥ 1, ∀ flight i,

x ∈ {0, 1}n.

6


	Outline
	Cutting stock problem
	Set packing, covering, partitioning
	Stable set problem
	st-paths and st-cuts
	Airline crew scheduling

