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1 Outline

In this lecture, we study

• convex hull and reduction to linear programming,

• characterizing the convex hull of a two variable mixed integer linear set,

• methods for solving integer programming.

2 Solving a system of equations with integer constraints

Consider the following example.

Example 6.1. Solve the following system.

10x1 + 4x2 + 3x3 = 3,

58x1 + 24x2 + 19x3 + 2x4 = 5,

3x1 + 2x2 = 5,

xi ∈ Z for i = 1, . . . , 4.

Then our constraint matrix A is

A =

10 4 3 0
58 24 19 2
3 2 0 0

 .

Eventually, we will get

H =

1 0 0 0
1 2 0 0
0 0 1 0

 and U =


−2 0 1 6
3 0 −1 −9
3 0 −2 −8
−6 1 2 10

 .

In this case, we get

U−1x =


3
1
5
0

+ k


0
0
0
1


from HU−1x = b and

x =


−1
4
−1
−7

+ k


6
−9
−8
10


from x = U(U−1x).
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2.1 Theorems of the alternative

The following result regards the solvability of a system of linear equations. The result is similar to
Farkas’ lemma for linear programming.

Theorem 6.2 (Fredholm Alternative). A system of m linear equations Ax = b is infeasible if and
only if there exists a vector u ∈ Rm such that u⊤A = 0 and u⊤b ̸= 0.

When the variables are restricted to be integers, whether a system of linear equations has a solution
can be determined by a similar characterization.

Theorem 6.3 (Integer Farkas Lemma). Let A ∈ Qm×d and b ∈ Qm. The system Ax = b, x ∈ Zd

is infeasible if and only if there exists a vector u such that A⊤u ∈ Zd and u⊤b ̸∈ Z.

Proof. Suppose that Ax = b, x ∈ Zd is feasible. Then ∀u ∈ Rm with A⊤u ∈ Zd, we have
u⊤b = u⊤Ax ∈ Z.

Suppose that Ax = b, x ∈ Zd is infeasible. If Ax = b is infeasible (even without the integrality
constraint), there exists a vector u ∈ Rm such that u⊤A = 0 and u⊤b ̸= 0 by the Fredholm
Alternative. In this case, we can scale u so that u⊤b is not an integer. To complete the proof, let
us consider the case when Ax = b is feasible and A has full row rank. Then A can be brought to its
Hermite normal form (D, 0) = AU for some unimodular matrix U . We saw that Ax = b, x ∈ Zd

has a solution if and only if ȳ = D−1b ∈ Zm. Thus, ∃i such that ȳi ̸∈ Z. Let u⊤ be the ith row of
D−1. Then u⊤b is not an integer. Now, we need to show that u⊤A is an integral vector. Note that

u⊤A = u⊤
[
D 0

]
U−1 = e⊤i U

−1.

where ei denotes the ith unit vector. Since U is unimodular and has integer entries, U−1 also has
integer entries. Therefore, u⊤A ∈ Zd.

3 The knapsack problem

We are given d items. Assume that item i ∈ [d] has weight wi and value pi. Moreover, the knapsack
capacity is given by B. The problem is to choose a combination of items whose total weight is
under the knapsack capacity that maximizes the value sum. This is called the knapsack problem
or the 0,1 knapsack problem.

We can model the 0,1 knapsack problem as an integer program. For each item i ∈ [d], we introduce
a binary variable xi to indicate whetehr we choose item i or not. Specifically,

xi =

{
1, if item i is taken in the knapsack

0, oterwise
.

Then the integer program is given by

max

d∑
i=1

pixi

s.t.
d∑

i=1

wixi ≤ B,

x ∈ {0, 1}d
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Here, the constraint
d∑

i=1

wixi ≤ B

is called the knapsack constraint. If we are allowed to choose multiple copies of an item, the
problem is called the unbounded knapsack problem. For the unbounded case, variable xi can
take a nonnegative integer variable, i.e.

xi ∈ Z+ is the number of copies of i taken in the knapsack.

In this case, the problem can be formulated as

max
d∑

i=1

pixi

s.t.
d∑

i=1

wixi ≤ B,

x ∈ Zd
+

For the remainder of this section, we focus on the 0,1 knapsack problem where we take at most one
copy of an item.

In fact, there is another formulation for the 0,1 knapsack problem. We refer the notion of minimal
covers.

Definition 6.4. C ⊆ [d] is a minimal cover if
∑

i∈C wi > B and
∑

i∈C\{j}wi ≤ B for all j ∈ C.

In words, C is a minimal cover if the weight sum of its items violates the knapsack capacity but all
its proper subsets are under the capacity. Let us consider the following integer program.

max
d∑

i=1

pixi

s.t.
∑
i∈C

xi ≤ |C| − 1, for every minimal cover C,

x ∈ {0, 1}d.

(6.1)

Let K and KC be defined as follows.

K =

{
x ∈ {0, 1}d :

d∑
i=1

wixi ≤ B

}
,

KC =

{
x ∈ {0, 1}d :

∑
i∈C

xi ≤ |C| − 1, for every minimal cover C

}
.

Proposition 6.5. KC = K, which means that (6.1) is a valid formulation of the 0,1 knapsack
problem.

Proof. If x̄ ∈ K, then x̄ obviously belongs to KC . Suppose that there exists ȳ ∈ KC such that
ȳ ̸∈ K. Then

∑d
i=1wiȳi > B. Let J = {i : ȳi = 1}. Then

∑
i∈J wi > B, so we can find a minimal

cover C contained in J . Then
∑

i∈C ȳi = |C| > |C| − 1, which contradicts the assumption that
ȳ ∈ KC .
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Then the question is as to which formulation is better. To determine what is “better”, we often
compare the LP relaxations of two formulations. Basically, we determine which formulation has a
tighter LP relaxation. Consider the following example.

Example 6.6. Consider the example where there are 3 items each of which has weight 3 while the
knapsack capacity is 5. Then

{x : 3x1 + 3x2 + 3x3 ≤ 5, 0 ≤ xi ≤ 1 for i = 1, 2, 3}

corresponds to the LP relaxation of the first formulation. Next, note that {1, 2}, {2, 3}, and {3, 1}
are the minimal covers. Then

{x : x1 + x2 ≤ 1, x2 + x3 ≤ 1, x1 + x3 ≤ 1, 0 ≤ xi ≤ 1 for i = 1, 2, 3}

is the relaxation of KC . It is easy to show that the latter is strictly contained in the former, because
3x1 + 3x2 + 3x3 ≤ 9/2 is valid for KC . Therefore, the formulation based on minimal covers has a
tighter relaxation.

The following example shows that the knapsack constraint based formulation can have a tighter
LP relaxation than the minimal cover based formulation.

Example 6.7. Assume that each item has weight 1 and the knapsack capacity is 1. Then

{x : x1 + x2 + x3 ≤ 1, 0 ≤ xi ≤ 1 for i = 1, 2, 3}

corresponds to the LP relaxation of the knapsack constraint base formulation. On the other hand,

{x : x1 + x2 ≤ 1, x2 + x3 ≤ 1, x1 + x3 ≤ 1, 0 ≤ xi ≤ 1 for i = 1, 2, 3}

corresponds to the other formulation. Note that the the former set is in fact the convex hull of the
integer solutions (1, 0, 0), (0, 1, 0), and (0, 0, 1), and moreover, it is tighter than the latter set.

4


	Outline
	Solving a system of equations with integer constraints
	Theorems of the alternative

	The knapsack problem
	Cutting stock problem

