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1 Outline

In this lecture, we study

• Hermite normal form,

• Unimodular matrices,

• Solving the equality constrained integer feasibility problem

2 Solving a system of equations with integer constraints

We consider the problem finding a solution satisfying the following constraints.

Ax = b and x ∈ Zd (∗)

where A ∈ Qm×d and b ∈ Qm consist of rational entries. Remember that integer programming is
NP-hard. In fact, the feasibility problem, the problem of finding a solution satisfying an inequality
system and integrality constraints

Ax ≤ b and x ∈ Zd

is NP-hard. However, when the linear constraints are given by all equality constraints as in (∗),
the feasibility problem is in the complexity class P.

Why is this true? The basic intuition is as follows. Suppose that A is a d × d nonsingular square
matrix. Then Ax = b holds if and only if x = A−1b. Hence, x = A−1b is the unique solution
satisfying the equality system. What this means is that the problem has a (unique) solution if
A−1b ∈ Zd. If A−1b /∈ Zd, it means that the feasibility problem does not have a solution. In
general, the number of rows in A, given by m, can be smaller than A, and the matrix is not
necessarily of full row rank. Nevertheless, the same intuition holds for the general case, for which
we will develop mathematical tools and an algorithm to find a solution satisfying (∗) and show that
the algorithm runs in polynomial time.

2.1 Hermite normal form

The first step is to transform the equality system Ax = b into something easier to deal with. We
reduce the constraint matrix A into the so-called Hermite normal form using unimodular
column operations.

Definition 5.1. A matrix A is in Hermite normal form if A is of the form A =
[
D 0

]
where

D is a square nonnegative matrix such that

(a) D is lower triangular.

(b) d11 > 0 and 0 ≤ dij < dii for i = 2, . . . , d and j < i.
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In particular, D is nonsingular.

Suppose that A is already in Hermite normal form. Then (∗) is easy to solve. Let y and z denote
the partial vectors corresponding to D and 0, respectively.

Ax =
[
D 0

] [y
z

]
= Dy.

Then we get Dy = b from Ax = b. Since D is nonsingular, Dy = b if and only if y = D−1b. Then
Ax = b is equivalent to x = (D−1b, z). If D−1b ̸∈ Zm, then (∗) has no solution. If D−1b is integral,
then x = (D−1b, 0) is an integer solution to (∗), and in general, x = (D−1b, z) for any integral z
gives rise to a solution.

Motivated by this, the strategy is to transform the system Ax = b to another system Hx = b′ where
H is in Hermite normal form. Here, H would be the Hermite normal form of A. As mentioned
above, to deduce H, we apply unimodular column operations that are defined below.

Definition 5.2. There are three kinds of unimodular column operations.

(i) Interchanging two columns.

(ii) Multiplying a column by −1.

(iii) Adding an integer multiple of a column to another column.

Theorem 5.3. Let A be a rational matrix with full row rank. Then A can be transformed into
Hermite normal form by a finite sequence of unimodular column operations.

Proof. If H is the Hermite normal form of A, then the Hermite normal form of kA for some positive
scalar k is kH. In particular, we may multiply A by the least common multiple of the denominators
of its entries so that the resulting matrix has all entries integral. Thus, we may assume that all
entries of A are integers without loss of generality.

Suppose that A =

[
D 0
B C

]
where

[
D 0

]
is in Hermite normal form. At the beginning,

[
D 0

]
may have no row, in which case, A =

[
B C

]
. Basically, we will enlarge the row submatrix of A

that is in Hermite normal form, by transforming the first row of submatrix
[
B C

]
. Note that

the first row of C must have a nonzero entry. Otherwise, the first row of
[
B C

]
is

implied by
[
D 0

]
, contradicting the assumption that A is of full row rank.

• Using operations (i) and (ii) in Definition 5.2, we transform C so that c11 ≥ c12 ≥ · · · ≥ c1k ≥
0. (Note: As the first row of C must have a nonzero entry, C11 has to be strictly
positive.)

• If c1j > 0 for some j ≥ 2, then using operation (iii) in Definition 5.2, we can subtract the jth
column of C from the first j − 1 columns of C.

This procedure keeps the first row of C still nonnegative while decreasing the value of c11+ · · ·+c1k.
Moreover, c11, . . . , c1k remain to be integers. We may repeat this procedure until c11 > 0 and c1j = 0
for j ≥ 2. As c11 + · · ·+ c1k decreases by at least 1, the procedure terminates after a finite number
of steps.

When c11 > 0 and c1j = 0 for j ≥ 2, we apply operation (iii) in Definition 5.2 to make 0 ≤ b1j < c11
for j = 1, . . . , d − k where d is the number of columns in A. Then the submatrix consisting of[
D 0

]
and the row

[
b11 · · · b1d−k c11 0 · · · 0

]
is in Hermite normal form.
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Remark 5.4 ([KB79]). The number of unimodular column operations needed in the proof is
polynomially bounded.

2.2 Unimodular matrices

We say that an m× d matrix U is unimodular if

• it has full row rank m,

• all its entries are integers,

• every m×m submatrix B of U satisfies det(B) ∈ {−1, 0, 1}.

Hence, a square matrix U is unimodular if all its entries are integers and det(U) ∈ {−1, 1} (Note:
a square unimodular matrix is non-singular). In fact, the unimodular column operations can be
performed by unimodular matrices.

First, interchanging column i and column j in matrix A can be done by computing AU where
matrix U is given by

• ukk = 1 for k ∈ {1, . . . , d} \ {i, j},

• uij = uji = 1,

• the other entries are 0.

Here, U is obtained after interchanging the ith column and the jth column of the d × d identity
matrix. Then U is a d× d square matrix with det(U) = −1, so U is unimodular.

Second, multiplying column i by −1 can be performed by AU where matrix U is obtained after
replacing the ith diagonal entry of the d× d identity matrix by −1. Then det(U) = −1, and thus
U is unimodular.

The third operation of adding an integer multiple, say α, of column i to column j can be performed
by AU where matrix U is obtained after replacing the entry of the d × d identity matrix at row i
and column j by α. Note that all entries of U are integers, taking a value in {0, 1, α}. Moreover,
the diagonal entries of U are still all 1, which means det(U) = 1. Therefore, U is unimodular.

The following lemma explains useful properties of unimodular matrices.

Lemma 5.5. Let U be a d× d nonsingular matrix. Then the following statements are equivalent

(i) U is unimodular,

(ii) both U and U−1 have all integral entries,

(iii) U−1 is unimodular,

(iv) Ux is integral if and only if x is integral for all x ∈ Rd,

(v) U is obtained from the d× d identity matrix by a sequence of unimodular column operations.
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2.3 Solving the equality constrained integer feasibility problem

Now, let’s get back to solving (∗).

1. First, we check whether the constraint matrix A is of full row rank. If A is not of full row
rank, then Ax = b has some redundant constraints or Ax = b induces an infeasible system.

For example,

2x1 + x2 + 2x3 + x4 = 5,

x1 + 2x2 + x3 + 2x4 = 10,

x1 + x2 + x3 + x4 = 5

corresponds to a constraint matrix that does not have full row rank. The system can be rewritten
as 2 1 2 1

1 2 1 2
1 1 1 1



x1
x2
x3
x4

 =

 5
10
5

 .

Here, the third constraint is obtained from adding the first two constraints and dividing the resulting
one by 3. In this case, we may remove the third constraint. Note that if the right-hand side of the
third constraint were not 5, then the system would be infeasible because the first two constraints
imply x1 + x2 + x3 + x4 = 5.

In case when A is not of full row rank and Ax = b has some redundant constraints, we remove the
redundant constraints so that the remaining constraint matrix is of full row rank. Thus we may
assume that A is of full row rank.

2. The second step is to compute the Hermite normal form of A, given by H = AU where U is
some unimodular matrix.

Then Ax = b is equivalent to
Ax = AUU−1x = HU−1x.

Here, as H is in Hermite normal form, H given by H =
[
D 0

]
for some nonsingular matrix D.

3. Let y be the subvector of U−1x corresponding to matrix D. Then HU−1x = b is equivalent
to Dy = b, which gives y = D−1b. Here,

U−1x =

[
D−1b
z

]
for any z ∈ Zd−m corresponds to a candidate solution.

4. Compute

x = U

[
D−1b
z

]
for any z ∈ Zd−m. Here, x ∈ Zd if and only if D−1b ∈ Zm.
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