
IE 631 Integer Programming KAIST, Spring 2023
Lecture #4: Convex Hull and Branch-and-Cut Methods March 9, 2023
Lecturer: Dabeen Lee

1 Outline

In this lecture, we study

• convex hull and reduction to linear programming,

• characterizing the convex hull of a two variable mixed integer linear set,

• methods for solving integer programming.

2 Two-dimensional mixed integer linear set

Consider a mixed integer linear set given by

S = {(x, y) ∈ Z× R+ : x− y ≤ β} (4.1)

for some β ∈ R. Note that
P = {(x, y) ∈ R× R+ : x− y ≤ β}

corresponds to the LP relaxation of S defined by the two inequalities y ≥ 0 and x−y ≤ β. Figure 4.1
illustrates the mixed integer linear set S and its relaxation P . Let us characterzie the convex hull

Figure 4.1: Illustration of S and P

of S.

Lemma 4.1. Let f = β − bβc be the fractional part of β. Then the inequality

x− 1

1− f
y ≤ bβc (4.2)

holds for any (x, y) ∈ S. In other words, the inequality is valid and a valid inequality for S.

The inequality (4.2) in Lemma 4.1 holds at equality when

(x, y) = (bβc, 0), (bβc+ 1, 1− f).

1



Figure 4.2: Valid inequality for S

Equivalently, the line defined by

x− 1

1− f
y = bβc

go through the two points (bβc, 0) and (bβc+ 1, 1− f), as shown in Figure 4.2.

We will see later that the mixed integer rounding (MIR) cuts by Nemhauser and Wolsey [NW90]
are obtained based on the inequality (4.2) that is valid for the mixed integer linear set (4.1).

In fact, the inequality (4.2) together with y ≥ 0 and x − y ≤ β describe the convex hull of the
mixed integer linear set (4.1).

Proposition 4.2. Let S = {(x, y) ∈ Z× R+ : x− y ≤ β}. Then

conv(S) =

{
(x, y) ∈ R× R+ : x− y ≤ β, x− 1

1− f
y ≤ bβc

}
.

Proof. LetQ denote the set on the right-hand side. By Lemma 4.1, we know that the inequality (4.2)
is valid for S, implying in turn that conv(S) ⊆ Q.

To show that Q ⊆ conv(S), we will argue that any point (x̄, ȳ) ∈ Q can be expressed as a convex
combination of some two points in S. If x̄ ∈ Z, then (x̄, ȳ) ∈ S ⊆ conv(S). Thus we may assume
that x̄ 6∈ Z. Note that one of the following three holds: (1) x̄ < bβc, (2) bβc < x̄ < bβc + 1, (3)
x̄ > bβc+ 1.

First, consider the case where x̄ < bβc, as shown in Figure 4.3. Then both bx̄c and dx̄e are less

Figure 4.3: The case x̄ < bβc

than or equal to bβc, so (bx̄c, ȳ) and (dx̄e, ȳ) belong to S. Here, (x̄, ȳ) is a convex combination of
(bx̄c, ȳ) and (dx̄e, ȳ).

Second, we consider the case where bβc < x̄ < bβc + 1, as shown in Figure 4.4. Let us give a

2



Figure 4.4: The case bβc < x̄ < bβc+ 1

pictorial proof. Draw a line segment that goes through (x̄, ȳ) and is parallel to the line defined by

x− 1

1− f
y = bβc.

The line segment crosses x = bβc and x = bβc+ 1. The intersection points belong to S, and x̄ is a
convex combination of them.

Lastly, we consider the case where bβc + 1 < x̄, as shown in Figure 4.5. Let us give a pictorial

Figure 4.5: The case bβc+ 1 < x̄

proof. Draw a line segment that goes through (x̄, ȳ) and is parallel to the line defined by x−y = β.
The line segment crosses x = bx̄c and x = dx̄e. The intersection points belong to S, and x̄ is a
convex combination of them.

One can find an algebraic proof of Proposition 4.2 from [CCZ14, Proposition 1.5].

3 Methods for solving integer programming

The most successful algorithmic frameworks for integer programming are the branch-and-bound
and the cutting-plane methods. Let us discuss the outlines and the ideas behind the methods.
Again, we consider an integer program

z∗ = max
{
c>x+ h>y : (x, y) ∈ S

}
(MILP0)

where
S =

{
(x, y) ∈ Zd × Rp : Ax+Gy ≤ b

}
.

The first common step is to solve the LP relaxation given by

z0 = max
{
c>x+ h>y : (x, y) ∈ P0

}
(LP0)

3



where
P0 =

{
(x, y) ∈ Rd × Rp : Ax+Gy ≤ b

}
.

The modern software uses the barrier method and the simplex method1. Let z0 be the optimal
value of the LP relaxation, and assume that z0 is finite. For rational data, z0 being finite implies
that the optimal value z∗ of the integer program is also finite (we will see this later).

Let (x0, y0) be an optimal solution to the LP relaxation. What if x0 ∈ Zd? Then (x0, y0) ∈ S. This
implies the following

max
{
c>x+ h>y : (x, y) ∈ S

}
≤ max

{
c>x+ h>y : (x, y) ∈ P0

}
= c>x0 + h>y0

≤ max
{
c>x+ h>y : (x, y) ∈ S

}
.

Here, the left-hand side and the right-most side coincide, so the equalities hold throughout, which
implies that (x0, y0) is an optimal solution to the integer program!

In general, the LP relaxation does not necessarily return an integer solution, and x0 may have some
fractional components. Here, the branch-and-bound and the cutting-plane methods provide two
natural strategies to deal with the situation where x0 has some fractional component.

3.1 Branch-and-bound method

Suppose that component x0j is fractional for some 1 ≤ j ≤ d. Then we know that

xj ≥ dx0je or xj ≤ bx0jc.

Based on this, we define

S1 = S ∩
{

(x, y) : xj ≥ dx0je
}

and S2 = S ∩
{

(x, y) : xj ≥ dx0je
}
,

and in fact, S = S1 ∪ S2. Moreover, we create two subproblems

max
{
c>x+ h>y : (x, y) ∈ S1

}
, (MILP1)

max
{
c>x+ h>y : (x, y) ∈ S2

}
. (MILP2)

Here, the maximum of the optimal values of (MILP1) and (MILP2) would be the optimal value of
the origirnal integer program (MILP0).

Note that starting from (MILP0), we have generated two subproblems (MILP1) and (MILP2). We
can represent this as a tree structure as in Figure 4.6

For (MILP1) and (MILP2), we solve their LP relaxations,

max
{
c>x+ h>y : (x, y) ∈ P1

}
, (LP1)

max
{
c>x+ h>y : (x, y) ∈ P2

}
(LP2)

where
P1 = P0 ∩

{
(x, y) : xj ≥ dx0je

}
and P2 = P0 ∩

{
(x, y) : xj ≤ bx0jc

}
.

1https://www.gurobi.com/documentation/9.5/refman/choosing_the_right_algorit.html

4

https://www.gurobi.com/documentation/9.5/refman/choosing_the_right_algorit.html


Figure 4.6: Generating two subproblems

• If (LP1) is infeasible, then it means (MILP1) is infeasible. Then we can remove it from the
search tree (Prune by infeasibility).

• If (LP1) returns an integral solution, it means (MILP1) is solved. Then we keep the integral
solution but remove (MILP1) from the search tree (Prune by integrality).

• If (LP1) returns a fractional solution while the value of (LP1) is less than or equal to
the value of the current best integral solution (possibly from solving (MILP2)), then we
remove (MILP1) from the search tree (Prune by value).

• If (LP1) returns a fractional solution while the value of (LP1) is greater than the value of
the current best integral solution, then we apply the branching procedure on a fractional
component.

We apply the same rule for (MILP2) and repeat the procedure for other subproblems remaining in
the tree. The tree that this process generates is called the branch-and-bound tree.

3.2 Cutting-plane method

Remember our example of the two-dimensional mixed integer linear set. The inequality (4.2) is
valid for the mixed-integer set but it is violated by the point (β, 0). So, if we take the set of solutions
satisfying (4.2), the point (β, 0) is removed. Here, we also say that the inequality cuts off the
point and that the point is separated from the mixed-integer set. In this sense, we say that (4.2)
is a cutting-plane or a cut.

Likewise, we take the solution (x0, y0) that is optimal to the LP relaxation (LP0), and we find a
cutting-plane that separates (x0, y0) from S. Here, an inequality α>x+ γ>y ≤ β is a cutting-plane
that separates (x0, y0) from S if

α>x+ γ>y ≤ β ∀(x, y) ∈ S and α>x0 + γ>y0 > β.

Then we get a new relaxation

max
{
c>x+ h>y : (x, y) ∈ P1

}
where

P1 = P0 ∩
{

(x, y) : α>x+ γ>y ≤ β
}
.

5



Figure 4.7: Applying a cutting-plane

Repeating the process, we obtain the following cutting-plane algorithm.

- Set t = 0.

- P0 =
{

(x, y) ∈ Rd × Rp : Ax+Gy ≤ b
}

be the solution set of the LP relaxation (LP0).

- Until we find an integral solution, repeat the following procedure.

1. Solve and obtain an optimal solution (xt, yt) to max
{
c>x+ h>y : (x, y) ∈ Pt

}
.

2. If (xt, yt) is integral, then we stop and (xt, yt) is the optimal integral solution.

3. If (xt, yt) is not integral, then find a cutting-plane α>x+γ>y ≤ β that separates (xt, yt)
and set

Pt+1 = Pt ∩
{

(x, y) : α>x+ γ>y ≤ β
}

and t← t+ 1.

3.3 Branch-and-cut method

The Branch-and-cut method is basically combining the branch-and-bound method and the cutting-
plane algorithm. While running the branch-and-bound procedure, we may find and apply a cutting-
plane that separates a fractional solution obtained from solving a subproblem.

The state-of-the-art integer programming software such as CPLEX and Gurobi implements the
branch-and-cut method. They apply some specially designed branching rules and cut generation
schemes.

One may want to use some problem specific cuts, such as subtour elimination inequalities for TSP
and odd set inequalities for the matching problem. In that case, we can use the (cut) callback
feature within CPLEX and Gurobi to apply user-defined cuts. Basically, the callback feature invokes
a node in the branch-and-bound tree and apply the user-defined cut.

• CPLEX: https://www.ibm.com/docs/en/icos/22.1.1?topic=legacy-cut-callback

• Gurobi: https://www.gurobi.com/documentation/10.0/refman/cpp_cb_addcut.html

It is often the case that adding problem-specific cuts leads to a significant improvement in solution
time.

How do you find problem specific cuts? One common way is to use the software PORTA.

6

https://www.ibm.com/docs/en/icos/22.1.1?topic=legacy-cut-callback
https://www.gurobi.com/documentation/10.0/refman/cpp_cb_addcut.html


• PORTA: https://porta.zib.de

Given a finite set of vectors as input, PORTA computes the convex hull. Conversely, given a set of
linear inequalities, PORTA computes the extreme points and the extreme rays.

References

[CCZ14] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Integer Programming.
Springer, 2014. 2

[NW90] George L. Nemhauser and Laurence A. Wolsey. A recursive procedure to generate all cuts
for 0-1 mixed integer programs. Mathematical Programming, 46:379–390, 1990. 2

7

https://porta.zib.de

	Outline
	Two-dimensional mixed integer linear set
	Methods for solving integer programming
	Branch-and-bound method
	Cutting-plane method
	Branch-and-cut method


