1 Outline

In this lecture, we study

- convex hull and reduction to linear programming,
- deriving a valid inequality for a two variable mixed integer linear set.

2 Convex hull and reduction to linear programming

A set $X \subseteq \mathbb{R}^{d}$ is convex if for any $u, v \in X$ and any $\lambda \in[0,1]$,

$$
\lambda u+(1-\lambda) v \in X .
$$

In words, the line segment joining any two points is entirely contained the set. In Figure 3.1, we have a convex set and a non-convex set.

Figure 3.1: A convex set and a nonconvex set

Given $v^{1}, \ldots, v^{k} \in \mathbb{R}^{d}$, any linear combination $\lambda_{1} v^{1}+\cdots+\lambda_{k} v^{k}$ is a convex combination of v^{1}, \ldots, v^{k} if

$$
\sum_{i=1}^{k} \lambda_{i}=1 \quad \text { and } \quad \lambda_{i} \geq 0 \quad \text { for } i=1, \ldots, k
$$

The convex combination of two distinct points u, v is the line segment $\{\lambda u+(1-\lambda) v: 0 \leq \lambda \leq 1\}$ connecting them.
The convex hull of a set $S \subseteq \mathbb{R}^{d}$, denoted $\operatorname{conv}(S)$, is the set of all convex combinations of points in S. By definition,

$$
\operatorname{conv}(S)=\left\{\begin{array}{c}
n \in \mathbb{N}, v^{1}, \ldots, v^{n} \in S, \\
\sum_{i=1}^{n} \lambda_{i} v^{i}: \quad \sum_{i=1}^{n} \lambda_{i}=1, \lambda_{1}, \ldots, \lambda_{n} \geq 0
\end{array}\right\} .
$$

$\operatorname{conv}(S)$ is always convex regardless of S. Figure 3.2 shows some examples of taking the convex hull of a (nonconvex) set.

Figure 3.2: A convex set and a nonconvex set

For our integer program given by

$$
\begin{align*}
\max & c^{\top} x+h^{\top} y \\
\text { s.t. } & A x+G y \leq b, \tag{3.1}\\
& x \in \mathbb{Z}^{d}, y \in \mathbb{R}^{p},
\end{align*}
$$

we take the feasible region for the set S, whose convex hull is given by

$$
\operatorname{conv}(S)=\operatorname{conv}\left(\left\{(x, y) \in \mathbb{Z}^{d} \times \mathbb{R}^{p}: A x+G y \leq b\right\}\right)
$$

Lemma 3.1. The integer program (3.1) whose feasible region is given by $S \subseteq \mathbb{Z}^{d} \times \mathbb{R}^{p}$ satisfies

$$
\max \left\{c^{\top} x+h^{\top} y:(x, y) \in S\right\}=\max \left\{c^{\top} x+h^{\top} y:(x, y) \in \operatorname{conv}(S)\right\}
$$

Moreover, the supremum of $c^{\top} x+h^{\top} y$ is attained over S if and only if it is attained over $\operatorname{conv}(S)$.
Proof. Since $S \subseteq \operatorname{conv}(S)$, it is straightforward that

$$
\max \left\{c^{\top} x+h^{\top} y:(x, y) \in S\right\} \leq \max \left\{c^{\top} x+h^{\top} y:(x, y) \in \operatorname{conv}(S)\right\}
$$

Next we show that

$$
\max \left\{c^{\top} x+h^{\top} y:(x, y) \in S\right\} \geq \max \left\{c^{\top} x+h^{\top} y:(x, y) \in \operatorname{conv}(S)\right\}
$$

holds. Let $z^{*}=\max \left\{c^{\top} x+h^{\top} y:(x, y) \in S\right\}$. Then we may assume that z^{*} is finite. Let us consider

$$
H=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{p}: c^{\top} x+h^{\top} y \leq z^{*}\right\} .
$$

By definition, we have $S \subseteq H$. Moreover, as H is convex, it follows that $\operatorname{conv}(S) \subseteq H$. This implies that

$$
\max \left\{c^{\top} x+h^{\top} y:(x, y) \in \operatorname{conv}(S)\right\} \leq z^{*}=\max \left\{c^{\top} x+h^{\top} y:(x, y) \in S\right\}
$$

which proves the desired inequality.

Assume that the supremum of $c^{\top} x+h^{\top} y$ is attaned at $(\bar{x}, \bar{y}) \in S$. Then

$$
\max \left\{c^{\top} x+h^{\top} y:(x, y) \in S\right\}=c^{\top} \bar{x}+h^{\top} \bar{y}
$$

Note that $(\bar{x}, \bar{y}) \in \operatorname{conv}(S)$, and the first part implies that

$$
\max \left\{c^{\top} x+h^{\top} y:(x, y) \in \operatorname{conv}(S)\right\}=c^{\top} \bar{x}+h^{\top} \bar{y}
$$

Now assume that the supremum of $c^{\top} x+h^{\top} y$ is attained at a point $(\bar{x}, \bar{y}) \in \operatorname{conv}(S)$. By the definition of $\operatorname{conv}(S)$, the point can be written as a convex combination of n points in S, given by $\left(x^{1}, y^{1}\right), \ldots,\left(x^{n}, y^{n}\right)$. As these n points also belong to $\operatorname{conv}(S)$, it follows that $c^{\top} x^{i}+h^{\top} y^{i} \leq$ $c^{\top} \bar{x}+h^{\top} \bar{y}$ for all i. Moreover,

$$
c^{\top} \bar{x}+h^{\top} \bar{y}=\sum_{i=1}^{n} \lambda_{i}\left(c^{\top} x^{i}+h^{\top} y^{i}\right)
$$

for some $\lambda_{1}, \ldots, \lambda_{n} \geq 0$ such that $\sum_{i \in[d]} \lambda_{i}=1$. Then

$$
c^{\top} \bar{x}+h^{\top} \bar{y}=\sum_{i=1}^{n} \lambda_{i}\left(c^{\top} x^{i}+h^{\top} y^{i}\right) \leq \sum_{i=1}^{n} \lambda_{i}\left(c^{\top} \bar{x}+h^{\top} \bar{y}\right)=c^{\top} \bar{x}+h^{\top} \bar{y},
$$

so the equalities hold throughout. Therefore, $c^{\top} x^{i}+h^{\top} y^{i}=c^{\top} \bar{x}+h^{\top} \bar{y}$ for all $i \in[n]$.
By Lemma 3.1, solving the integer program (3.1) is equivalent to optimizing over the convex hull $\operatorname{conv}(S)$. By Meyer's theorem [Mey74] (we will discuss this later in this course), we know that there exists a system of rational linear inequalities $A^{\prime} x+G^{\prime} y \leq b^{\prime}$ such that

$$
\operatorname{conv}(S)=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{p}: A^{\prime} x+G^{\prime} y \leq b^{\prime}\right\}
$$

Consequently, the integer program $\max \left\{c^{\top} x+h^{\top} y:(x, y) \in S\right\}$ is equivalent to the linear program

$$
\max \left\{c^{\top} x+h^{\top} y: A^{\prime} x+G^{\prime} y \leq b^{\prime}\right\}
$$

for some rational matrices $A^{\prime}, G^{\prime}, b^{\prime}$. Therefore, we may say that integer programming reduces to linear programming. Wait, does this contradict our earlier discusstion that integer programming is NP-hard while linear programming is in class P? The answer is NO. The reason is that Meyer's theorem shows the existence of such a linear system, and in fact, computing the linear system that gives us the convex hull of S is in general hard.

3 Two-dimensional mixed integer linear set

Consider a mixed integer linear set given by

$$
\begin{equation*}
S=\left\{(x, y) \in \mathbb{Z} \times \mathbb{R}_{+}: x-y \leq \beta\right\} \tag{3.2}
\end{equation*}
$$

for some $\beta \in \mathbb{R}$. Note that

$$
P=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}_{+}: x-y \leq \beta\right\}
$$

corresponds to the LP relaxation of S defined by the two inequalities $y \geq 0$ and $x-y \leq \beta$. Figure 3.3 illustrates the mixed integer linear set S and its relaxation P. Let us characterzie the convex hull

Figure 3.3: Illustration of S and P
of S.
Given a set $C \subseteq \mathbb{R}^{d}$, we say that $a^{\top} x \leq b$ where $a \in \mathbb{R}^{d}$ and $b \in \mathbb{R}$ is valid and a valid inequality for C if

$$
C \subseteq\left\{x \in \mathbb{R}^{d}: a^{\top} x \leq b\right\} .
$$

In words, inequality $a^{\top} x \leq b$ is valid for C if every point x in C satisfies the inequality. Here, the set

$$
\left\{x \in \mathbb{R}^{d}: a^{\top} x \leq b\right\}
$$

is called a half-space, and the set

$$
\left\{x \in \mathbb{R}^{d}: a^{\top} x=b\right\}
$$

is called a hyperplane.

Figure 3.4: A half-space (left) and a hyperplane (right)

Lemma 3.2. Let $f=\beta-\lfloor\beta\rfloor$ be the fractional part of β. Then the inequality

$$
\begin{equation*}
x-\frac{1}{1-f} y \leq\lfloor\beta\rfloor \tag{3.3}
\end{equation*}
$$

holds for any $(x, y) \in S$. In other words, the inequality is valid and a valid inequality for S.

Proof. Let $(x, y) \in S$. Then $x \leq\lfloor\beta\rfloor$ or $x \geq\lfloor\beta\rfloor+1$. If $x \leq\lfloor\beta\rfloor$, then as $y \geq 0$, the inequality holds. If $x \geq\lfloor\beta\rfloor+1$, then $x=\lfloor\beta\rfloor+k$ for some integer $k \geq 1$. Then $x-y \leq \beta$ implies that $y \geq k-f$, in which case

$$
x-\frac{1}{1-f} y \leq\lfloor\beta\rfloor+k-\frac{k-f}{1-f}=\lfloor\beta\rfloor-\frac{(k-1) f}{1-f} \leq\lfloor\beta\rfloor,
$$

as required.
The inequality (3.3) in Lemma 3.2 holds at equality when

$$
(x, y)=(\lfloor\beta\rfloor, 0), \quad(\lfloor\beta\rfloor+1,1-f) .
$$

Equivalently, the line defined by

$$
x-\frac{1}{1-f} y=\lfloor\beta\rfloor
$$

go through the two points $(\lfloor\beta\rfloor, 0)$ and $(\lfloor\beta\rfloor+1,1-f)$, as shown in Figure 3.5.

Figure 3.5: Valid inequality for S

We will see later that the mixed integer rounding (MIR) cuts by Nemhauser and Wolsey [NW90] are obtained based on the inequality (3.3) that is valid for the mixed integer linear set (3.2).

References

[CCZ14] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Integer Programming. Springer, 2014.
[Mey74] R. R. Meyer. On the existence of optimal solutions to integer and mixed integer programming problems, 1974. 2
[NW90] George L. Nemhauser and Laurence A. Wolsey. A recursive procedure to generate all cuts for 0-1 mixed integer programs. Mathematical Programming, 46:379-390, 1990. 3

