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1 Outline

In this lecture, we study

e convex hull and reduction to linear programming,

e deriving a valid inequality for a two variable mixed integer linear set.

2 Convex hull and reduction to linear programming

A set X C R? is convex if for any u,v € X and any X € [0, 1],
Mt (1— Ao e X.

In words, the line segment joining any two points is entirely contained the set. In Figure 3.1, we

have a convex set and a non-convex set.

Figure 3.1: A convex set and a nonconvex set
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The convex combination of two distinct points u, v is the line segment {Au+ (1 —A)v: 0 <A <1}
connecting them.

The convex hull of a set S C R?, denoted conv(S), is the set of all convex combinations of points
in S. By definition,

n n €N, vl,...,v"e&
conv(S) = Z)\ivi: n
i=1 Z)‘i:L Ay A >0
i=1

conv(S) is always convex regardless of S. Figure 3.2 shows some examples of taking the convex
hull of a (nonconvex) set.



Figure 3.2: A convex set and a nonconvex set

For our integer program given by

max c' z+h'y
st. Ar+ Gy <b, (3.1)
reZ% yeRP,

we take the feasible region for the set S, whose convex hull is given by
conv(S) = conv ({(w,y) €ZIxRP: Ax+ Gy < b}) .
Lemma 3.1. The integer program (3.1) whose feasible region is given by S C Z x RP satisfies
max {cTa: +hly: (z,y) € S} = max {ch +hly: (z,9) € conv(S)} .

Moreover, the supremum of ¢ x4+ h'y is attained over S if and only if it is attained over conv(S).

Proof. Since S C conv(S), it is straightforward that

max {CT.CU +hly: (z,y) € S} < max {CTI +hly: (z,y) € conv(S)} .
Next we show that

max {ch +hly: (x,y) € S} > max {ch +hTy: (z,y) € conv(S)}

holds. Let z* = max{cTa: +hly: (z,y) € S}. Then we may assume that z* is finite. Let us
consider

H:{(:p,y)eRdx]Rp: chJrhTySz*}.

By definition, we have S C H. Moreover, as H is convex, it follows that conv(S) C H. This implies
that
T T, . * _ T T, .
max{c r+h'y: (r,y) € COHV(S)} <zZzF= max{c x+h'y: (z,y) € S},

which proves the desired inequality.



Assume that the supremum of ¢z + h'y is attaned at (zZ,7) € S. Then
max {ch +hly: (x,y) € S} =c'z+h'y.
Note that (Z,7) € conv(S), and the first part implies that
max {ch +hly: (z,y) € conv(S)} =c'z+n'y.

Now assume that the supremum of c'z + h'y is attained at a point (Z,y) € conv(S). By the
definition of conv(.S), the point can be written as a convex combination of n points in S, given
by (z',y),..., (2", y™). As these n points also belong to conv(S), it follows that ¢’ 2 + hTy? <
c¢'z 4 h'y for all i. Moreover,

Tz +hTy= Z Ai(eTzt 4+ hTyh)
i=1

for some A1,..., A, > 0 such that Zie[d} A; = 1. Then

cTZ+hTg=> N(cTa'+hTy) <> N(cz+h'g) =cTz+n'y,
i=1 i=1

so the equalities hold throughout. Therefore, ¢' 2 +h'y’ = c'z + h'y for all i € [n]. O

By Lemma 3.1, solving the integer program (3.1) is equivalent to optimizing over the convex hull
conv(S). By Meyer’s theorem [Mey74] (we will discuss this later in this course), we know that there
exists a system of rational linear inequalities A’z + G’y < b such that

conv(S) = {(:U,y) ERIXRP: Az +Gy< b’}.

Consequently, the integer program max {ch +hTy: (z,y) €8 } is equivalent to the linear pro-
gram

max {ch +h'y: Alz+G'y < b’}

for some rational matrices A’, G’,b’. Therefore, we may say that integer programming reduces to
linear programming. Wait, does this contradict our earlier discusstion that integer programming
is NP-hard while linear programming is in class P? The answer is NO. The reason is that Meyer’s
theorem shows the existence of such a linear system, and in fact, computing the linear system that
gives us the convex hull of S is in general hard.

3 Two-dimensional mixed integer linear set
Consider a mixed integer linear set given by
S={(x,y) €ZxRy: z—y< B} (3.2)

for some 5 € R. Note that
P={(z,y) eRxRy: z—y<p}

corresponds to the LP relaxation of S defined by the two inequalities y > 0 and x—y < 5. Figure 3.3
illustrates the mixed integer linear set .S and its relaxation P. Let us characterzie the convex hull
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Figure 3.3: Illustration of S and P

of S.

Given a set C' C Rd, we say that a'z < bwhere a € R and b € R is valid and a valid inequality
for C if
CQ{mERd: aTang}.

In words, inequality a2 < b is valid for C if every point z in C satisfies the inequality. Here, the
set

{xGRd: aTﬂUSb}
is called a half-space, and the set

{meRd: aszb}

is called a hyperplane.
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Figure 3.4: A half-space (left) and a hyperplane (right)

Lemma 3.2. Let f = 5 — | 3] be the fractional part of 3. Then the inequality

o= <18) (33)

holds for any (xz,y) € S. In other words, the inequality is valid and a valid inequality for S.



Proof. Let (z,y) € S. Thenx < |B] or z > |B]+1. If x < |5], then as y > 0, the inequality holds.
If x > |B] + 1, then z = |B] + k for some integer k > 1. Then x — y < 8 implies that y > k — f,

in which case ) - k- 1)f
x—ﬁyﬁ L6J+k—ﬁ= LﬁJ—ﬁS 18],

as required. O

The inequality (3.3) in Lemma 3.2 holds at equality when

(.’E,y) = (L5J70)7 (I_BJ + 171 - f)

Equivalently, the line defined by
vty = 13)
1— 7Y~

go through the two points (|3],0) and ([5] + 1,1 — f), as shown in Figure 3.5.
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Figure 3.5: Valid inequality for S

We will see later that the mixed integer rounding (MIR) cuts by Nemhauser and Wolsey [NW90]
are obtained based on the inequality (3.3) that is valid for the mixed integer linear set (3.2).
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