
IE 631 Integer Programming KAIST, Spring 2023
Lecture #2: Terminologies and complexity of integer programming March 2, 2023
Lecturer: Dabeen Lee

1 Outline

In this lecture, we study

• integer programming formulation,

• computational complexity of integer programming.

2 Integer programming formulation

Let us formally define the intege programming problem. A pure integer linear program is an
optimization problem of the following form.

max c>x

s.t. Ax ≤ b,
x ∈ Zd

(2.1)

where

• c ∈ Rd,

• A is an m × d matrix that has rows a>1 , . . . , a
>
m and b ∈ Rm has entries b1, . . . , bm so that

Ax ≤ b consists of linear inequalities a>1 x ≤ b1, . . . , a>mx ≤ bm, and

• Zd is the set of d-dimensional vectors all whose entries are integers.

We usually assume that all entries of A, b, c are rational, i.e. A ∈ Qm×d, b ∈ Qm, and c ∈ Qd.
Hereinafter, we say that a vector x is integral if all entries of x are integers. We call x ∈ Zd

the integrality constraint. The integer program (2.1) is called pure because all variables are
restricted to be integral.

Many applications have their decision variables nonnegative, in which case we need constraints
x ≥ 0. Here, we may assume that the system of linear inequalities Ax ≤ b includes x ≥ 0.

Decision-making problems may also have decisions of fractional values as well as integer values.
To model such a problem, we define a mixed integer linear program (MIP or MILP) as
follows.

max c>x+ h>y

s.t. Ax+Gy ≤ b,
x ∈ Zd, y ∈ Rp

(2.2)

where A, b, c,G, h are vectors/matrices of appropriate dimension with rational entries. It is common
to omit the constraint y ∈ Rp from (2.2). When there is no continuous variable, i.e. p = 0, (2.2)
reduces to a pure integer linear program (2.1). Throughout the course, we refer to mixed integer
linear programs simply as integer programs.

1

The feasible region or the solution set of (2.2) is the set of solutions satisfying the linear
constraints and the integrality constraints:

S =
{

(x, y) ∈ Zd × Rp : Ax+Gy ≤ b
}
.

A set of the form S is often referred to as a mixed integer linear set.

An important concept is the notion of relaxation. The linear programming relaxation or the
LP relaxation of (2.2) is the same optimization problem except that the integrality constraints
are relaxed:

max c>x+ h>y

s.t. Ax+Gy ≤ b.
(2.3)

Hence, the LP relaxation is, by definition, a linear program. In fact, the notion of relaxation applies
to the feasible region intself. Basically, we say that a set S0 is a relaxation of the feasible region S
if S ⊆ S0. Hence,

P =
{

(x, y) ∈ Rd × Rp : Ax+Gy ≤ b
}

which is the feasible region of the LP relaxation (2.3) gives rise to a relaxation of S. We could take

P ′ =
{

(x, y) ∈ Rd × Rp : A′x+G′y ≤ b′
}

with a different system of linear inequalities as long as S ⊆ P ′.

Example 2.1. Recall the simple example from the last lecture. The LP relaxation of

max 4x+ 5y

s.t. x+ 3y ≤ 10,

3x+ y ≤ 10,

x, y ≥ 0,

(x, y) ∈ Z2.

is given by

max 4x+ 5y

s.t. x+ 3y ≤ 10,

3x+ y ≤ 10,

x, y ≥ 0.

Moreover, {(x, y) ∈ R2
+ : x + 3y ≤ 10, 3x + y ≤ 10} is a relaxation of {(x, y) ∈ Z2

+ : x + 3y ≤
10, 3x+y ≤ 10}. Here, R+ is the set of nonnegative real numbers while Z+ is the set of nonnegative
integers.

Combinatorial optimization problems and other problems in operations research involve decisions
of binary values. For such problems, we need binary variables. A mixed 0,1 linear program or
a mixed binary linear program is of the form

max c>x+ h>y

s.t. Ax+Gy ≤ b,
x ∈ {0, 1}d, y ∈ Rp

(2.4)

2

where {0, 1}d is the set of all length d binary strings. The feasible region

S =
{

(x, y) ∈ {0, 1}d × Rp : Ax+Gy ≤ b
}

is often referred to as a mixed 0,1 linear set or a mixed binary linear set.

3 Computational complexity of integer programming

Take a mixed 0,1 linear program as in (2.4). Note that it can be written as

max f(x)

s.t. x ∈ {0, 1}d
(2.5)

where
f(x) = c>x+ max

{
h>y : Gy ≤ b−Ax

}
.

Given a binary vector x ∈ {0, 1}d, evaluating f(x) boils down to solving a linear program, for which
there are known methods. When (2.4) is a pure 0,1 linear program, we do not have any continuous
variables, so evaluating f(x) is equivalent to checking whether 0 ≤ b−Ax holds or not.

Then a pure mathematician would say that the problem is trivial because there is only a finite
number of binary vectors, so we can simply enumerate all vecrtors. However, we are concerned
about the computational complexity. The number of binary vectors is 2d, which grows exponentially
fast in the ambient dimension d, and enumerating 2d vectors is what we want to avoid.

Example 2.2 (Traveling Salesman Problem (TSP)). Given n points in the Euclidean space, the
Traveling Salesman Problem is to find a minimum length tour that visits every point precisely
once. The total number of tours is (n − 1)!/2. Note that 10!/2 is roughly 1.8 million. Hence,
enumerating all poissble tours of n points requires going through 1.8 million tours!

In fact, 100! is approximately 9.9 × 10157, and 1000! is roughly 4 × 102567. Note that the number
of entire atoms in the universe is about 1080.

Recall that integer programming is NP-hard. What does this really mean? To understand the
computational complexity of integer programming, let us briefly touch upon the basics of complexity
theory.

3.1 Problems, instances, enconding size

A problem means a question to be answered for any set of data. For example, linear programming,
integer programming, and TSP. An instance of a problem is given by a specific data set. (2.1)
gives an instance of linear programming and an instance of integer programming.

Given a problem instance, we consider its encoding size to measure the amount of space required
to write down the data of the instance. All integers are written in binary encoding, and to encode
an integer n, we need one bit to represent its sign (+ or -) and dlog2(|n| + 1)e bits to encode |n|.
Then the encoding size of integer n is 1 + dlog2(|n|+ 1)e. For a rational number p/q where q is a
positive integer, we need 1 + dlog2(|p|+ 1)e+ dlog2(|q|+ 1)e bits.

The encoding size of a rational vector (
p1
q1
, . . . ,

pd
qd

)
3

would be
d∑

j=1

(1 + dlog2(|pj |+ 1)e+ dlog2(|qj |+ 1)e)

plus some extra space to construct a vector from scalars. Similarly, the encoding size of an m× d
matrix whose entry at row i and column j is given by pij/qij is

m∑
i=1

d∑
j=1

(1 + dlog2(|pij |+ 1)e+ dlog2(|qij |+ 1)e) .

Recall that a mixed integer linear program as in (2.2) is given by data A, b, c,G, h. Hence, the
encoding size of an MILP is the encoding size of A, b, c,G, h, and the encoding size will basically be
the input size of the MILP. Therefore, if all entries of A, b, c,G, h are integers, then the encoding
size is given by

(1 + dlog2(M + 1)e) · (d+ p+m+ (d+ p)m)

where M is the largest absolute value of an entry in A, b, c,G, h.

Proposition 2.3. Let A be an invertible d × d rational matrix and b be a d-dimensional rational
vector. Then the encoding size of the unique solution to the system Ax = b is polynomially bounded
by the encoding size of (A, b).

Proof. Suppose that the entry of A at row i and column j is given by pij/qij where pij is an integer
and qij is a positive integer. Let

M =
d∏

i=1

d∏
j=1

qij , A′ = M ·A, b′ = M · b.

Then the system Ax = b is equivalent to A′x = b′, and all entries of A′, b′ are integers. Then, by
Cramer’s rule, each entry of the unique solution x is given by

xi =
det(A′i)

det(A′)

where A′i is what is obtained from A′ after replacing its ith column by b′.

Let θ be the largest absolute value of an entry in (A′, b′). In fact,

θ ≤M · max
i∈[d],j∈[d]

|pij |,

and therefore, the encoding size of θ is at most

logM + max
i,j∈[d]

(1 + dlog2(|pij |+ 1)e) =
d∑

i=1

d∑
j=1

(1 + log2(|qij |+ 1)) + max
i,j∈[d]

(1 + dlog2(|pij |+ 1)e) ≤ L

where L is the encoding size of (A, b). Moreover, by the Leibniz formula of matrix determinent, it
follows that

det(A′) ≤ d!θd.

Similarly, we obtain that det(A′i) ≤ d!θd for every i ∈ [d]. As the determinants det(A′) and det(A′i)
are integers, their encoding sizes are bounded above by

O(log(d!θd)) = O(d log d+ d× the encoding size of θ) = O(d log d+ dL).

4

As x has d entries, it follows that the encoding size of x is

O(d2 log d+ d2L),

as required.

3.2 Polynomial algorithm and complexity class P

We say that a function f : S → R is polynomially bounded by another function g : S → R if
there is some polynomial φ : R→ R such that

f(s) ≤ φ(g(s)) ∀s ∈ S.

Next we recall the big O notation. Given functions f : R→ R+ and g : R→ R+, we write that

f(x) = O(g(x))

if there exists some fixed constant M and x0 ∈ R such that

f(x) ≤Mg(x) ∀x ≥ x0.

The running time of an algorithm is measured as the number of arithmetic operations carried
out by the algorithm. A polynomial (time) algorithm for a problem is an algorithm which
solves the problem in polynomial time, and equivalently, in time polynomially bounded by
the encoding size of the input instance.

For example, the ellipsoid method due to [Kha80] performs O(d6L) arithemtic operations for solv-
ing a linear programming instance where d is the number of variables and L is the encoding
size. Karmarkar’s interior point method takes O(d2.5L) operations for a linear programming in-
stance [Kar84, Vai89]. Note that the encoding size L should be at least the number of variables d,
and therefore, the ellipsoid method and the interior point method are polynomial algorithms for
linear programming.

The complexity class P is the class of all problems for which there is a polynomial algorithm.
Then linear programming belongs to the complexity class P. Moreover, remember that bipartite
matching can be solved by a linear programming formulation, so bipartite matching also belongs
to class P.

3.3 Complexity class NP and NP-hardness

A decision problem is a problem whose answer is either yes or no. The complexity class NP
is the class of decision problems where the yes answer has a certificate that can be checked in
polynomial time by a deterministic Turing machine. For example, the decision version of TSP
is the problem of finding a tour whose length less than some value k. A certificate for the yes
answer would be a tour of length less than k, and computing the length of the given tour can be
done in polynomial time (we just look at the graph). The decision version of integer programming
is the problem of determining if there is an integer solution whose objective is less than k (for the
minimization problem). Again, a certificate for the yes answer would be an integer solution, and
we can compute its objective value in polynomial time (we just plug in the given solution to the
objective function).

Alternatively, the class NP is the class of decision problems that can be solved in polynomial time
by a non-deterministic Turing machine.

5

Similarly, the complexity class co-NP is the class of decision problems where the no answer has
a certificate that can be checked in polynomial time by a deterministic Turing machine.

As each problem in complexity class P can be solved in polynomial time by a deterministic Turing
machine, class P is contained in the intersection of NP and co-NP, denoted as NP∩ co-NP. A big
open question is as to whether P=NP. Most computer scientists believe that the answer is no.

A decision problem Q in NP is called NP-complete if all other problems in NP can be reduced
to Q in polynomial time. Cook [Coo71] proved that the decision version of integer programming
is NP-complete. A problem Q that is not necessarily a decision problem nor a decision problem is
NP-hard if all other problems in NP can be reduced to Q in polynomial time.

References

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the
Third Annual ACM Symposium on Theory of Computing, STOC ’71, page 151–158, New
York, NY, USA, 1971. Association for Computing Machinery. 3.3

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings of
the Sixteenth Annual ACM Symposium on Theory of Computing, STOC ’84, page 302–311,
New York, NY, USA, 1984. Association for Computing Machinery. 3.2

[Kha80] Leonid.G. Khachiyan. Polynomial algorithms in linear programming. USSR Computa-
tional Mathematics and Mathematical Physics, 20(1):53–72, 1980. 3.2

[Mey74] R. R. Meyer. On the existence of optimal solutions to integer and mixed integer program-
ming problems, 1974.

[Vai89] P.M. Vaidya. Speeding-up linear programming using fast matrix multiplication. In 30th
Annual Symposium on Foundations of Computer Science, pages 332–337, 1989. 3.2

6

	Outline
	Integer programming formulation
	Computational complexity of integer programming
	Problems, instances, enconding size
	Polynomial algorithm and complexity class P
	Complexity class NP and NP-hardness

