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1 Outline

In this lecture, we study

• branch-and-price method,

• Benders decomposition.

2 Branch-and-price based on Dantzig-Wolfe decomposition

Let us consider a mixed integer program

zI = max c>x

s.t. Ax ≤ b
Ex ≤ f
x ∈ Zd

+ × Rp
+.

(MIP)

Let Q be defined as

Q =
{
x ∈ Zd

+ × Rp
+ : Ax ≤ b

}
.

Suppose that conv(Q) can be expressed as

conv(Q) = conv
{
v1, . . . , vn

}
+ cone

{
r1, . . . , r`

}
for some vectors v1, . . . , vn and r1, . . . , r`. Recall that the Dantzig-Wolfe relaxation of (MIP) is
given by

zLD = max
∑
k∈[n]

(
c>vk

)
αk +

∑
h∈[`]

(
c>rh

)
βk

s.t.
∑
k∈[n]

(
Evk

)
αk +

∑
h∈[`]

(
Erh

)
βk ≤ f∑

k∈[n]

αk = 1

α ∈ Rk
+, β ∈ R`

+.

(DW)

(DW) is a relaxation of (MIP), and moreover, we may impose the integrality constraints by adding

xj =
∑
k∈[n]

αkv
k
j +

∑
h∈[`]

βhr
h
j ∈ Z, j ∈ [d].

Consequently, we may apply the branch-and-bound framework to the Dantzig-Wolfe relaxation (DW).
This approach is known as the branch-and-price method. The basic workflow is as follows.
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1. Solve (DW) and obtain an optimal solution (α∗, β∗) which gives rise to

x∗ =
∑
k∈[n]

α∗kv
k
j +

∑
h∈[`]

β∗hr
h
j .

2. If x∗j 6∈ Z for some j ∈ [d], then we create two subproblems based on disjunction∑
k∈[n]

αkv
k
j +

∑
h∈[`]

βhr
h
j ≥ dx∗je or

∑
k∈[n]

αkv
k
j +

∑
h∈[`]

βhr
h
j ≤ bx∗jc.

3. We repeat the above procedure for the subproblems.

3 Benders decomposition

We use the Lagrangian relaxation framework to deal with complicating constraints. In this section,
we learn the Benders reformulation technique that can deal with complicating variables. Let us
consider the following mixed-integer program.

zI = max c>x+ q>y

s.t. Ax+Gy ≤ b
x ∈ Zd

+, y ∈ Rp
+.

(MIP)

Here, the integer variables x are complicating variables. If we fix the x part, then the optimization
problem becomes

zLP (x) = max q>y

s.t. Gy ≤ b−Ax
y ∈ Rp

+.

Taking the dual of it, we deduce

min u>(b−Ax)

s.t. G>u ≥ q
u ≥ 0.

Here, the feasible set of the dual does not depend on x. Let Q denote the feasible set of the dual:

Q =
{
u : G>u ≥ q, u ≥ 0

}
.

Suppose that Q can be expressed as

Q = conv
{
v1, . . . , vn

}
+ cone

{
r1, . . . , r`

}
for some vectors v1, . . . , vn and r1, . . . , r`. We will prove the following theorem.

Theorem 23.1. (MIP) can be reformulated as

zI = max η

s.t. η ≤ c>x+ (b−Ax)>vk, k ∈ [n]

(b−Ax)>rh ≥ 0, h ∈ [`]

x ∈ Zd
+, η ∈ R.

(Benders)
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To prove Theorem 23.1, we need the following projection theorem of Egon Balas.

Theorem 23.2. Let P =
{

(x, y) ∈ Rd × Rp : Ax+Gy ≤ b, y ≥ 0
}
. Suppose that we can express

C =
{
u : G>u ≥ 0, u ≥ 0

}
as C = cone

{
r1, . . . , r`

}
for some vectors r1, . . . , r`. Then projx(P ),

the projection of P onto the x-space, is given by

projx(P ) =
{
x ∈ Rd : (b−Ax)>rh ≥ 0, h ∈ [`]

}
.

Proof. Let x̄ ∈ Rd. Note that x̄ 6∈ projx(P ) holds if and only if there is no y ∈ Rp that satisfies Gy ≤
b−Ax̄ and y ≥ 0. By Farkas’ Lemma, the system Gy ≤ b−Ax̄, y ≥ 0 is infeasible if and only if there
exists u ∈ C such that u>(b− Ax̄) < 0. Since C = cone

{
r1, . . . , r`

}
, such a vector u exists if and

only if (b−Ax̄)>rh for some h ∈ [`], in which case, x̄ 6∈
{
x ∈ Rd : (b−Ax)>rh ≥ 0, h ∈ [`]

}
.

Let us prove Theorem 23.2.

Proof of Theorem 23.1. Let P =
{

(x, y) ∈ Rd × Rp : Ax+Gy ≤ b, y ≥ 0
}

. Note that

zI = max c>x+ zLP (x)

s.t. x ∈ Zd
+.

Here, zLP (x) > −∞ if and only if there exists some y ≥ 0 such that Gy ≤ b − Ax, which is
equivalent to x ∈ projx(P ). Therefore, it follows that

zI = max c>x+ zLP (x)

s.t. x ∈ projx(P ) ∩ Zd
+.

Recall that Q =
{
u : G>u ≥ q, u ≥ 0

}
and Q = conv

{
v1, . . . , vn

}
+ cone

{
r1, . . . , r`

}
. Then

C =
{
u : G>u ≥ 0, u ≥ 0

}
is the recession cone of Q, so we have C = cone

{
r1, . . . , r`

}
. Then

it follows from Theorem 23.2 that projx(P ) =
{
x ∈ Rd : (b−Ax)>rh ≥ 0, h ∈ [`]

}
. Therefore, we

deduce that

zI = max c>x+ zLP (x)

s.t. (b−Ax)>rh ≥ 0, h ∈ [`]

x ∈ Zd
+.

Moreover, note that for any x ∈ projx(P ), zLP (x) > −∞, so strong duality implies that

zLP (x) = min u>(b−Ax)

s.t. G>u ≥ q
u ≥ 0.

If zLP (x) is finite, then it means that Q is non-empty and

zLP (x) = min
k∈[n]

{
(b−Ax)>vk

}
.

If zLP (x) = +∞, then Q is empty, so zLP (x) = mink∈[n]
{

(b−Ax)>vk
}

also holds. Hence,

zI = max c>x+ min
k∈[n]

{
(b−Ax)>vk

}
s.t. (b−Ax)>rh ≥ 0, h ∈ [`]

x ∈ Zd
+.
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We may move the term mink∈[n]
{

(b−Ax)>vk
}

in the objective to constraints, after which we
deduce that

zI = max η

s.t. η ≤ c>x+ min
k∈[n]

{
(b−Ax)>vk

}
(b−Ax)>rh ≥ 0, h ∈ [`]

x ∈ Zd
+, η ∈ R

which is equivalent to (Benders) as required.

(Benders) is the Benders reformulation of (MIP). In general, the Benders reformulation has
an enormous number of constraints. A natural approach is to work with a small subset of the
constraints and add new ones as cutting planes. The Benders decomposition algorithm, which
is nothing but the row generation framework for (Benders), is as follows.

At iteration t, we have Nt ⊆ [n] and Lt ⊆ [n]. Then we solve

ztI = max η

s.t. η ≤ c>x+ (b−Ax)>vk, k ∈ Nt

(b−Ax)>rh ≥ 0, h ∈ Lt

x ∈ Zd
+, η ∈ R.

This is the master problem for the Benders decomposition algorithm. Assume that we get a
solution (xt, ηt) after solving the master problem at iteration t. Then the row generation framework
attempts to find a violated inequality among

η ≤ c>x+ (b−Ax)>vk, k ∈ [n] \Nt,

(b−Ax)>rh ≥ 0, h ∈ [`] \ Lt.

Hence, the question is

• does there exists kt ∈ [n] such that

ηt > c>xt + (b−Axt)>vkt?

• does there exists ht ∈ [`] such that

(b−Axt)>rht < 0?

To answer this, we solve

zLP (xt) = max q>y

s.t. Gy ≤ b−Axt

y ∈ Rp
+.

This is the subproblem for the Benders decomposition algorithm. Note that if zLP (xt) = +∞,
then it means that for any M > 0, there exists y ≥ 0 such that Axt +Gy ≤ b and c>xt + q>y > M ,
in which case zI = +∞. If zLP (xt) is finite, then

zLP (xt) = min
k∈[n]

(b−Axt)>vk = (b−Axt)>vkt
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for some kt. Hence, we deduce that

c>xt + zLP (xt) = c>xt + (b−Axt)>vkt .

Moreover, if zLP (xt) = −∞, then the subproblem is infeasible, in which case, there exists ht ∈ [`]
such that

(b−Axt)>rht < 0.

Based on this discussion, we summarize the Benders decomposition algorithm as the following
pseudo-code.

Algorithm 1 Benders decomposition algorithm

Initialize N1 ⊆ [n] and L1 ⊆ [`].
for t = 1, . . . , T do

Solve the master problem with Nt ⊆ [n] and Lt ⊆ [`].
if ztI = −∞ then

Conclude that (MIP) is infeasible.
end if
Let (xt, ηt) be an optimal solution to the master problem.
Solve the subproblem with xt.
if zLP (xt) = +∞ then

Conclude that (MIP) is unbounded.
else if zLP (xt) is finite then

Let yt be an optimal solution.
Let kt ∈ argmink∈[n]

{
(b−Axt)>vk

}
.

if c>xt + q>yt ≥ ηt then
Conclude that (xt, yt) is an optimal solution to (MIP).

else if c>xt + q>yt < ηt then
Add constraint η ≤ c>x+ (b−Ax)>vkt (optimality cut).
Update Nt+1 = Nt ∪ {kt}.

end if
else if zLP (xt) = −∞ then

Then xt 6∈ projx(P ) and there exists ht ∈ [`] such that (b−Ax)>rht < 0.
Add constraint (b−Ax)>rht ≥ 0 (feasibility cut).
Update Lt+1 = Lt ∪ {ht}.

end if
end for
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