1 Outline

In this lecture, we study

- Dantzig-Wolfe decomposition based on the Lagrangian dual,
- Dantzig-Wolfe decomposition for binary programs,
- Dantzig-Wolfe decomposition for models with block diagonal structure,
- Column generation for the Dantzig-Wolfe reformulation.

2 Dantzig-Wolfe decomposition

Let us consider a mixed integer program

$$
\begin{align*}
z_{I}=\max & c^{\top} x \\
\text { s.t. } & A x \leq b \\
& E x \leq f \tag{MIP}\\
& x \in \mathbb{Z}_{+}^{d} \times \mathbb{R}_{+}^{p} .
\end{align*}
$$

We will learn the Dantzig-Wolfe decomposition framework for solving the mixed-integer program.

2.1 Dantzig-Wolfe decomposition based on the Lagrangian dual

Let Q be defined as

$$
Q=\left\{x \in \mathbb{Z}_{+}^{d} \times \mathbb{R}_{+}^{p}: A x \leq b\right\} .
$$

Assume that Q is nonempty and that A, b have rational entries. Let m be the number of rows of E, and take $\lambda \in \mathbb{R}_{+}^{m}$. Remember that we define the Lagrangian relaxation of (MIP) with respect to λ as follows.

$$
\begin{align*}
z_{\mathrm{LR}}(\lambda)=\max & c^{\top} x+\lambda^{\top}(f-E x) \\
\text { s.t. } & A x \leq b \tag{LR}\\
& x \in \mathbb{Z}_{+}^{d} \times \mathbb{R}_{+}^{p} .
\end{align*}
$$

Moreover, recall that the Lagrangian dual of the mixed integer program (MIP) is defined as

$$
\begin{equation*}
z_{\mathrm{LD}}=\min \left\{z_{\mathrm{LR}}(\lambda): \lambda \geq 0\right\} . \tag{LD}
\end{equation*}
$$

We learned that (MIP) and (LD) are related according to the following characterization of (LD).

$$
z_{\mathrm{LD}}=\max \left\{c^{\top} x: E x \leq f, x \in \operatorname{conv}(Q)\right\} .
$$

Furthermore, by the Minkowski-Weyl theorem, $\operatorname{conv}(Q)$ can be expressed as

$$
\operatorname{conv}(Q)=\operatorname{conv}\left\{v^{1}, \ldots, v^{n}\right\}+\operatorname{cone}\left\{r^{1}, \ldots, r^{\ell}\right\}
$$

where v^{1}, \ldots, v^{n} are the extreme points of $\operatorname{conv}(Q)$ and r^{1}, \ldots, r^{ℓ} are the extreme rays of $\operatorname{conv}(Q)$. Then any point x in $\operatorname{conv}(Q)$ can be written as

$$
x=\sum_{k \in[n]} \alpha_{k} v^{k}+\sum_{h \in[\ell]} \beta_{h} r^{h}
$$

for some $\alpha \in \mathbb{R}_{+}^{k}$ and $\beta \in \mathbb{R}_{+}^{\ell}$ such that

$$
\sum_{k \in[n]} \alpha_{k}=1
$$

Based on this, it follows that

$$
\begin{align*}
z_{\mathrm{LD}}=\max & \sum_{k \in[n]}\left(c^{\top} v^{k}\right) \alpha_{k}+\sum_{h \in[\ell]}\left(c^{\top} r^{h}\right) \beta_{k} \\
\text { s.t. } & \sum_{k \in[n]}\left(E v^{k}\right) \alpha_{k}+\sum_{h \in[\ell]}\left(E r^{h}\right) \beta_{k} \leq f \tag{DW1}\\
& \sum_{k \in[n]} \alpha_{k}=1 \\
& \alpha \in \mathbb{R}_{+}^{k}, \beta \in \mathbb{R}_{+}^{\ell} .
\end{align*}
$$

Remember that the Lagrangian dual (LD) is a relaxation of (MIP). Hence, we refer to (DW1) as the Dantzig-Wolfe relaxation of (MIP). Moreover, we have

$$
z_{I}=\max \left\{c^{\top} x: E x \leq f, x \in \operatorname{conv}(Q), x_{j} \in \mathbb{Z} \forall j \in[d]\right\}
$$

Therefore, we deduce

$$
\begin{align*}
z_{I}=\max & \sum_{k \in[n]}\left(c^{\top} v^{k}\right) \alpha_{k}+\sum_{h \in[\ell]}\left(c^{\top} r^{h}\right) \beta_{k} \\
\text { s.t. } & \sum_{k \in[n]}\left(E v^{k}\right) \alpha_{k}+\sum_{h \in[\ell]}\left(E r^{h}\right) \beta_{k} \leq f \\
& \sum_{k \in[n]} \alpha_{k}=1 \tag{DW2}\\
& \alpha \in \mathbb{R}_{+}^{k}, \beta \in \mathbb{R}_{+}^{\ell} \\
& \sum_{k \in[n]} \alpha_{k} v_{j}^{k}+\sum_{h \in[\ell]} \beta_{h} r_{j}^{h} \in \mathbb{Z}, \quad j \in[d] .
\end{align*}
$$

Here, the formulation (DW2) is referred to as the Dantzig-Wolfe reformulation of (MIP).

2.2 Dantzig-Wolfe decomposition as the dual of the Lagrangian dual

Recall that the Dantzig-Wolfe decomposition is given by

$$
\begin{array}{ll}
\max & \sum_{k \in[n]}\left(c^{\top} v^{k}\right) \alpha_{k}+\sum_{h \in[\ell]}\left(c^{\top} r^{h}\right) \beta_{k} \\
\text { s.t. } & \sum_{k \in[n]}\left(E v^{k}\right) \alpha_{k}+\sum_{h \in[\ell]}\left(E r^{h}\right) \beta_{k} \leq f \\
& \sum_{k \in[n]} \alpha_{k}=1 \\
& \alpha \in \mathbb{R}_{+}^{k}, \beta \in \mathbb{R}_{+}^{\ell} .
\end{array}
$$

is the equivalent representation of the Lagrangian dual. Let us take its dual. We use dual variable λ for the inequality constraint and dual variable μ for the equality constraint. Then we deduce

$$
\begin{aligned}
\min & \lambda^{\top} f+\mu \\
\text { s.t. } & \mu+\left(E v^{k}\right)^{\top} \lambda \geq c^{\top} v^{k}, \quad k \in[n] \\
& \left(E r^{h}\right)^{\top} \lambda \geq c^{\top} r^{h}, \quad h \in[\ell] \\
& \lambda \geq 0
\end{aligned}
$$

Note that this is equivalent to

$$
\begin{array}{ll}
\min & \lambda^{\top} f+\mu \\
\text { s.t. } & \mu \geq \max _{k \in[n]}\left\{\left(c-E^{\top} \lambda\right)^{\top} v^{k}\right\} \\
& \lambda \in \operatorname{dom}\left(z_{\mathrm{LR}}\right)
\end{array}
$$

because

$$
\operatorname{dom}\left(z_{\mathrm{LR}}\right)=\left\{\lambda:\left(c-E^{\top} \lambda\right)^{\top} r^{h} \leq 0 \forall h \in[\ell], \lambda \geq 0\right\} .
$$

Eliminating the variable μ, we obtain

$$
\begin{array}{ll}
\min & \lambda^{\top} f+\max _{k \in[n]}\left\{\left(c-E^{\top} \lambda\right)^{\top} v^{k}\right\} \\
\text { s.t. } & \lambda \in \operatorname{dom}\left(z_{\mathrm{LR}}\right) .
\end{array}
$$

This is equivalent to

$$
\begin{aligned}
& \min _{\lambda \in \operatorname{dom}\left(z_{\mathrm{LR}}\right)} \max _{k \in[n]}\left\{\lambda^{\top} f+\left(c-E^{\top} \lambda\right)^{\top} v^{k}\right\} \\
& =\min _{\lambda \in \operatorname{dom}\left(z_{\mathrm{LR}}\right)}^{\max _{k \in[n]}\left\{c^{\top} v^{k}+\lambda^{\top}\left(f-E v^{k}\right)\right\}} \\
& z_{\mathrm{LR}}(\lambda) \\
& =\min \left\{z_{\mathrm{LR}}(\lambda): \lambda \in \operatorname{dom}\left(z_{\mathrm{LR}}\right)\right\} \\
& =z_{\mathrm{LD}} .
\end{aligned}
$$

2.3 Dantzig-Wolfe decomposition for pure binary programs

Let us consider a pure binary integer program as follows.

$$
\begin{align*}
z_{I}=\max & c^{\top} x \\
\text { s.t. } & A x \leq b \tag{BP}\\
& E x \leq f \\
& x \in\{0,1\}^{d} .
\end{align*}
$$

We define Q as

$$
Q=\left\{x \in\{0,1\}^{d}: A x \leq b\right\} .
$$

Since Q is bounded and finite,

$$
Q=\left\{v^{1}, \ldots, v^{n}\right\} .
$$

Then any point x in Q can be expressed as

$$
x=\sum_{k \in[n]} \alpha_{k} v^{k}, \quad \sum_{k \in[n]} \alpha_{k}=1, \quad \alpha \in\{0,1\}^{n} .
$$

Then it follows that

$$
\begin{aligned}
z_{I}=\max & \sum_{k \in[n]}\left(c^{\top} v^{k}\right) \alpha_{k} \\
\text { s.t. } & \sum_{k \in[n]}\left(E v^{k}\right) \alpha_{k} \leq f \\
& \sum_{k \in[n]} \alpha_{k}=1 \\
& \alpha \in\{0,1\}^{n} .
\end{aligned}
$$

This formulation is the Dantzig-Wolfe reformulation of (BP). Then the Dantzig-Wolfe relaxation of (BP) is

$$
\begin{array}{ll}
\max & \sum_{k \in[n]}\left(c^{\top} v^{k}\right) \alpha_{k} \\
\text { s.t. } & \sum_{k \in[n]}\left(E v^{k}\right) \alpha_{k} \leq f \\
& \sum_{k \in[n]} \alpha_{k}=1 \\
& \alpha \geq 0
\end{array}
$$

2.4 Problems with block diagonal structure

We consider the following optimization model

$$
\begin{array}{rccr}
\max & c^{1 \top} x^{1}+c^{2 \top} x^{2}+\cdots & +c^{p \top} x^{p} \\
\text { s.t. } & A^{1} x^{1} & & \\
& & & \leq b^{1} \\
& A^{2} x^{2} & & \leq b^{2} \tag{22.1}\\
& & & \\
& & A^{p} x^{p} \leq b^{p} \\
& E^{1} x^{1}+E^{2} x^{2}+\cdots & +E^{p} x^{d} & \leq f \\
& x^{j} \in\{0,1\}^{d_{j}}, & j \in[p] .
\end{array}
$$

For $j \in[p]$, let Q_{j} be defined as

$$
Q_{j}=\left\{x^{j} \in\{0,1\}^{d_{j}}: A^{j} x^{j} \leq b^{j}\right\}
$$

Here, Q_{j} is bounded and finite, so any point x^{j} in Q_{j} can be written as

$$
x^{j}=\sum_{v \in Q_{j}} \alpha_{v}^{j} v, \quad \sum_{v \in Q_{j}} \alpha_{v}^{j}=1, \quad \alpha^{j} \in\{0,1\}^{\left|Q_{j}\right|} .
$$

Therefore, the Dantzig-Wolfe reformulation of (22.1) is given by

$$
\begin{array}{ll}
\max & \sum_{v \in Q_{1}}\left(c^{1 \top} v\right) \alpha_{v}^{1}+\sum_{v \in Q_{2}}\left(c^{2 \top} v\right) \alpha_{v}^{2}+\cdots+\sum_{v \in Q_{p}}\left(c^{p \top} v\right) \alpha_{v}^{p} \\
\text { s.t. } & \sum_{v \in Q_{1}}\left(E^{1} v\right) \alpha_{v}^{1}+\sum_{v \in Q_{2}}\left(E^{2} v\right) \alpha_{v}^{2}+\cdots+\sum_{v \in Q_{p}}\left(E^{p} v\right) \alpha_{v}^{p} \leq f \\
& \sum_{v \in Q_{j}} \alpha_{v}^{j}=1, \quad j \in[p] \\
& \alpha^{j} \in\{0,1\}^{\left|Q_{j}\right|}, \quad j \in[p] .
\end{array}
$$

Then the Dantzig-Wolfe relaxation of (22.1) is given by

$$
\begin{array}{ll}
\max & \sum_{v \in Q_{1}}\left(c^{1 \top} v\right) \alpha_{v}^{1}+\sum_{v \in Q_{2}}\left(c^{2 \top} v\right) \alpha_{v}^{2}+\cdots+\sum_{v \in Q_{p}}\left(c^{p \top} v\right) \alpha_{v}^{p} \\
\text { s.t. } & \sum_{v \in Q_{1}}\left(E^{1} v\right) \alpha_{v}^{1}+\sum_{v \in Q_{2}}\left(E^{2} v\right) \alpha_{v}^{2}+\cdots+\sum_{v \in Q_{p}}\left(E^{p} v\right) \alpha_{v}^{p} \leq f \\
& \sum_{v \in Q_{j}} \alpha_{v}^{j}=1, \quad j \in[p] \\
& \alpha^{j} \geq 0, \quad j \in[p] .
\end{array}
$$

Let us consider the special case where

- $c^{1}=\cdots=c^{p}=c$,
- $E^{1}=\cdots=E^{p}=E$,
- $Q^{1}=\cdots=Q^{p}=Q$.

Then in the Dantzig-Wolfe relaxation, we may set

$$
\alpha=\alpha^{1}+\alpha^{2}+\cdots+\alpha^{p} .
$$

As a result, the Dantzig-Wolfe relaxation becomes

$$
\begin{array}{ll}
\max & \sum_{v \in Q}\left(c^{\top} v\right) \alpha_{v} \\
\text { s.t. } & \sum_{v \in Q}(E v) \alpha_{v} \leq f \\
& \sum_{v \in Q} \alpha_{v}=p \\
& \alpha \geq 0 .
\end{array}
$$

3 Column generation for solving the Dantzig-Wolfe reformulation

The Dantzig-Wolfe relaxation (DW1) has variables $\alpha_{1}, \ldots, \alpha_{n}$ for the extreme points of $\operatorname{conv}(Q)$ and variables $\beta_{1}, \ldots, \beta_{\ell}$ for the extreme rays of $\operatorname{conv}(Q)$. Therefore, n and ℓ are potentially very large. In this case, we may apply the column generation technique. Recall that the dual of (DW1) is given by

$$
\begin{aligned}
\min & \lambda^{\top} f+\mu \\
\text { s.t. } & \mu+\left(E v^{k}\right)^{\top} \lambda \geq c^{\top} v^{k}, \quad k \in[n] \\
& \left(E r^{h}\right)^{\top} \lambda \geq c^{\top} r^{h}, \quad h \in[\ell] \\
& \lambda \geq 0
\end{aligned}
$$

The column generation procedure works as follows. We start with $N \subseteq[n]$ and $L \subseteq[\ell]$. Then we have the master problem

$$
\begin{array}{ll}
\max & \sum_{k \in N}\left(c^{\top} v^{k}\right) \alpha_{k}+\sum_{h \in L}\left(c^{\top} r^{h}\right) \beta_{k} \\
\text { s.t. } & \sum_{k \in N}\left(E v^{k}\right) \alpha_{k}+\sum_{h \in L}\left(E r^{h}\right) \beta_{k} \leq f \\
& \sum_{k \in N} \alpha_{k}=1 \\
& \alpha \in \mathbb{R}_{+}^{k}, \beta \in \mathbb{R}_{+}^{\ell}
\end{array}
$$

Given the corresponding dual solution (λ, μ), then the associated subproblem is given by

$$
\max \left\{\max _{k \in[n]}\left\{\left(c-E^{\top} \lambda\right)^{\top} v^{k}-\mu\right\}, \max _{h \in[\ell]}\left\{\left(c-E^{\top} \lambda\right)^{\top} r^{h}\right\}\right\} .
$$

If the value of the subproblem is strictly positive, then there exists $k \in[n] \backslash N$ or $h \in[\ell] \backslash L$ whose associated constraint in the dual is violated. Then we can add the corresponding variable. In fact, the subproblem can be equivalently solved by

$$
\max \left\{\left(c-E^{\top} \lambda\right)^{\top} x-\mu: x \in \operatorname{conv}(Q)\right\} \Leftrightarrow \max \left\{c^{\top} x+\lambda^{\top}(f-E x): x \in \operatorname{conv}(Q)\right\}
$$

If this optimization problem is unbounded, then there must exist an extreme ray r^{h} for some $h \in[\ell] \backslash L$ such that $\left(E r^{h}\right)^{\top} \lambda<c^{\top} r^{h}$. If it has a strictly positive finite optimum, then there exists an extreme point v^{k} for some $k \in[n] \backslash N$ such that $\mu+\left(E v^{k}\right)^{\top} \lambda<c^{\top} v^{k}$.

