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1 Outline

In this lecture, we study

• Dantzig-Wolfe decomposition based on the Lagrangian dual,

• Dantzig-Wolfe decomposition for binary programs,

• Dantzig-Wolfe decomposition for models with block diagonal structure,

• Column generation for the Dantzig-Wolfe reformulation.

2 Dantzig-Wolfe decomposition

Let us consider a mixed integer program

zI = max c>x

s.t. Ax ≤ b
Ex ≤ f
x ∈ Zd+ × Rp+.

(MIP)

We will learn the Dantzig-Wolfe decomposition framework for solving the mixed-integer pro-
gram.

2.1 Dantzig-Wolfe decomposition based on the Lagrangian dual

Let Q be defined as

Q =
{
x ∈ Zd+ × Rp+ : Ax ≤ b

}
.

Assume that Q is nonempty and that A, b have rational entries. Let m be the number of rows of E,
and take λ ∈ Rm+ . Remember that we define the Lagrangian relaxation of (MIP) with respect
to λ as follows.

zLR(λ) = max c>x+ λ>(f − Ex)

s.t. Ax ≤ b
x ∈ Zd+ × Rp+.

(LR)

Moreover, recall that the Lagrangian dual of the mixed integer program (MIP) is defined as

zLD = min {zLR(λ) : λ ≥ 0} . (LD)

We learned that (MIP) and (LD) are related according to the following characterization of (LD).

zLD = max
{
c>x : Ex ≤ f, x ∈ conv(Q)

}
.
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Furthermore, by the Minkowski-Weyl theorem, conv(Q) can be expressed as

conv(Q) = conv
{
v1, . . . , vn

}
+ cone

{
r1, . . . , r`

}
where v1, . . . , vn are the extreme points of conv(Q) and r1, . . . , r` are the extreme rays of conv(Q).
Then any point x in conv(Q) can be written as

x =
∑
k∈[n]

αkv
k +

∑
h∈[`]

βhr
h

for some α ∈ Rk+ and β ∈ R`+ such that ∑
k∈[n]

αk = 1.

Based on this, it follows that

zLD = max
∑
k∈[n]

(
c>vk

)
αk +

∑
h∈[`]

(
c>rh

)
βk

s.t.
∑
k∈[n]

(
Evk

)
αk +

∑
h∈[`]

(
Erh

)
βk ≤ f∑

k∈[n]

αk = 1

α ∈ Rk+, β ∈ R`+.

(DW1)

Remember that the Lagrangian dual (LD) is a relaxation of (MIP). Hence, we refer to (DW1) as
the Dantzig-Wolfe relaxation of (MIP). Moreover, we have

zI = max
{
c>x : Ex ≤ f, x ∈ conv(Q), xj ∈ Z ∀j ∈ [d]

}
.

Therefore, we deduce

zI = max
∑
k∈[n]

(
c>vk

)
αk +

∑
h∈[`]

(
c>rh

)
βk

s.t.
∑
k∈[n]

(
Evk

)
αk +

∑
h∈[`]

(
Erh

)
βk ≤ f∑

k∈[n]

αk = 1

α ∈ Rk+, β ∈ R`+∑
k∈[n]

αkv
k
j +

∑
h∈[`]

βhr
h
j ∈ Z, j ∈ [d].

(DW2)

Here, the formulation (DW2) is referred to as the Dantzig-Wolfe reformulation of (MIP).
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2.2 Dantzig-Wolfe decomposition as the dual of the Lagrangian dual

Recall that the Dantzig-Wolfe decomposition is given by

max
∑
k∈[n]

(
c>vk

)
αk +

∑
h∈[`]

(
c>rh

)
βk

s.t.
∑
k∈[n]

(
Evk

)
αk +

∑
h∈[`]

(
Erh

)
βk ≤ f∑

k∈[n]

αk = 1

α ∈ Rk+, β ∈ R`+.

is the equivalent representation of the Lagrangian dual. Let us take its dual. We use dual variable
λ for the inequality constraint and dual variable µ for the equality constraint. Then we deduce

min λ>f + µ

s.t. µ+ (Evk)>λ ≥ c>vk, k ∈ [n]

(Erh)>λ ≥ c>rh, h ∈ [`]

λ ≥ 0

Note that this is equivalent to

min λ>f + µ

s.t. µ ≥ max
k∈[n]

{(
c− E>λ

)>
vk
}

λ ∈ dom(zLR)

because

dom(zLR) =

{
λ :

(
c− E>λ

)>
rh ≤ 0 ∀h ∈ [`], λ ≥ 0

}
.

Eliminating the variable µ, we obtain

min λ>f + max
k∈[n]

{(
c− E>λ

)>
vk
}

s.t. λ ∈ dom(zLR).

This is equivalent to

min
λ∈dom(zLR)

max
k∈[n]

{
λ>f +

(
c− E>λ

)>
vk
}

= min
λ∈dom(zLR)

max
k∈[n]

{
c>vk + λ>(f − Evk)

}
︸ ︷︷ ︸

zLR(λ)

= min {zLR(λ) : λ ∈ dom(zLR)}
= zLD.
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2.3 Dantzig-Wolfe decomposition for pure binary programs

Let us consider a pure binary integer program as follows.

zI = max c>x

s.t. Ax ≤ b
Ex ≤ f
x ∈ {0, 1}d.

(BP)

We define Q as

Q =
{
x ∈ {0, 1}d : Ax ≤ b

}
.

Since Q is bounded and finite,
Q =

{
v1, . . . , vn

}
.

Then any point x in Q can be expressed as

x =
∑
k∈[n]

αkv
k,

∑
k∈[n]

αk = 1, α ∈ {0, 1}n.

Then it follows that

zI = max
∑
k∈[n]

(
c>vk

)
αk

s.t.
∑
k∈[n]

(
Evk

)
αk ≤ f∑

k∈[n]

αk = 1

α ∈ {0, 1}n.

This formulation is the Dantzig-Wolfe reformulation of (BP). Then the Dantzig-Wolfe relaxation
of (BP) is

max
∑
k∈[n]

(
c>vk

)
αk

s.t.
∑
k∈[n]

(
Evk

)
αk ≤ f∑

k∈[n]

αk = 1

α ≥ 0
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2.4 Problems with block diagonal structure

We consider the following optimization model

max c1>x1 + c2>x2 + · · · + cp>xp

s.t. A1x1 ≤ b1

A2x2 ≤ b2

. . .

Apxp ≤ bp

E1x1 + E2x2 + · · · + Epxd ≤ f
xj ∈{0, 1}dj , j ∈ [p].

(22.1)

For j ∈ [p], let Qj be defined as

Qj =
{
xj ∈ {0, 1}dj : Ajxj ≤ bj

}
.

Here, Qj is bounded and finite, so any point xj in Qj can be written as

xj =
∑
v∈Qj

αjvv,
∑
v∈Qj

αjv = 1, αj ∈ {0, 1}|Qj |.

Therefore, the Dantzig-Wolfe reformulation of (22.1) is given by

max
∑
v∈Q1

(
c1>v

)
α1
v +

∑
v∈Q2

(
c2>v

)
α2
v + · · ·+

∑
v∈Qp

(
cp>v

)
αpv

s.t.
∑
v∈Q1

(
E1v

)
α1
v +

∑
v∈Q2

(
E2v

)
α2
v + · · ·+

∑
v∈Qp

(Epv)αpv ≤ f∑
v∈Qj

αjv = 1, j ∈ [p]

αj ∈ {0, 1}|Qj |, j ∈ [p].

Then the Dantzig-Wolfe relaxation of (22.1) is given by

max
∑
v∈Q1

(
c1>v

)
α1
v +

∑
v∈Q2

(
c2>v

)
α2
v + · · ·+

∑
v∈Qp

(
cp>v

)
αpv

s.t.
∑
v∈Q1

(
E1v

)
α1
v +

∑
v∈Q2

(
E2v

)
α2
v + · · ·+

∑
v∈Qp

(Epv)αpv ≤ f∑
v∈Qj

αjv = 1, j ∈ [p]

αj ≥ 0, j ∈ [p].

Let us consider the special case where

• c1 = · · · = cp = c,

• E1 = · · · = Ep = E,
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• Q1 = · · · = Qp = Q.

Then in the Dantzig-Wolfe relaxation, we may set

α = α1 + α2 + · · ·+ αp.

As a result, the Dantzig-Wolfe relaxation becomes

max
∑
v∈Q

(
c>v

)
αv

s.t.
∑
v∈Q

(Ev)αv ≤ f∑
v∈Q

αv = p

α ≥ 0.

3 Column generation for solving the Dantzig-Wolfe reformulation

The Dantzig-Wolfe relaxation (DW1) has variables α1, . . . , αn for the extreme points of conv(Q)
and variables β1, . . . , β` for the extreme rays of conv(Q). Therefore, n and ` are potentially very
large. In this case, we may apply the column generation technique. Recall that the dual of (DW1)
is given by

min λ>f + µ

s.t. µ+ (Evk)>λ ≥ c>vk, k ∈ [n]

(Erh)>λ ≥ c>rh, h ∈ [`]

λ ≥ 0.

The column generation procedure works as follows. We start with N ⊆ [n] and L ⊆ [`]. Then we
have the master problem

max
∑
k∈N

(
c>vk

)
αk +

∑
h∈L

(
c>rh

)
βk

s.t.
∑
k∈N

(
Evk

)
αk +

∑
h∈L

(
Erh

)
βk ≤ f∑

k∈N
αk = 1

α ∈ Rk+, β ∈ R`+.

Given the corresponding dual solution (λ, µ), then the associated subproblem is given by

max

{
max
k∈[n]

{
(c− E>λ)>vk − µ

}
, max
h∈[`]

{
(c− E>λ)>rh

}}
.

If the value of the subproblem is strictly positive, then there exists k ∈ [n] \N or h ∈ [`] \L whose
associated constraint in the dual is violated. Then we can add the corresponding variable. In fact,
the subproblem can be equivalently solved by

max
{

(c− E>λ)>x− µ : x ∈ conv(Q)
}
⇔ max

{
c>x+ λ>(f − Ex) : x ∈ conv(Q)

}
.
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If this optimization problem is unbounded, then there must exist an extreme ray rh for some
h ∈ [`] \L such that (Erh)>λ < c>rh. If it has a strictly positive finite optimum, then there exists
an extreme point vk for some k ∈ [n] \N such that µ+ (Evk)>λ < c>vk.
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