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1 Outline

In this lecture, we study

• the uncapacitated facility location problem.

• subgradient algorithm for the Lagrangian dual.

2 Uncapacitated facility location

There are m customers, and each customer i ∈ [m] has demand di. There are d locations for
building facilities. Each location j ∈ [d] requires fixed annual operating cost fj . Let cij is the cost
of transporting one unit of item from location j to customer i. The (uncapacitated) facility location
problem is to determine where to build facilities so as to minimize the total cost while satisfying
the customer demands.

To formulate the problem, we introduce variable xj to indicate whether we build a facility in
location j or not.

xj =

{
1, if we build a facility in j,

0, otherwise.

Let yij be the fraction of demand di of customer i that is dealt with by facility in j. Then the
problem can be formulated as

min

m∑
i=1

d∑
j=1

cijdiyij +

n∑
j=1

fjxj

s.t.
n∑

j=1

yij = 1, i = 1, . . . ,m

0 ≤ yij ≤ xj , i = 1, . . . ,m, j = 1, . . . , d

x ∈ {0, 1}d.

Theorem 20.1. For every customer i ∈ [m], it is optimal to satisfy its demand by a single fixed
facility.

Therefore, we may assume that y is binary, and the problem can be reformulated as

min

m∑
i=1

d∑
j=1

cijdiyij +

n∑
j=1

fjxj

s.t.
n∑

j=1

yij = 1, i = 1, . . . ,m

yij ≤ xj , i = 1, . . . ,m, j = 1, . . . , d

y ∈ {0, 1}m×d, x ∈ {0, 1}d.
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Here, the constraints
n∑

j=1

yij = 1, i = 1, . . . ,m

are complicating constraints. Given a multiplier vector λ ∈ Rm, the associated Lagrangian relax-
ation is given by

zLR(λ) = min
m∑
i=1

d∑
j=1

cijdiyij +
n∑

j=1

fjxj +
m∑
i=1

λi(1−
d∑

j=1

yij)

s.t. yij ≤ xj , i = 1, . . . ,m, j = 1, . . . , d

y ∈ {0, 1}m×d, x ∈ {0, 1}d.

We may rewrite this as

zLR(λ) = min

m∑
i=1

d∑
j=1

(cijdi − λi)yij +

n∑
j=1

fjxj +

m∑
i=1

λi

s.t. yij ≤ xj , i = 1, . . . ,m, j = 1, . . . , d

y ∈ {0, 1}m×d, x ∈ {0, 1}d.

Then the corresponding Lagrangian dual is defined as

zLD = max{zLR(λ) : λ ∈ Rm}.

The advantage of working over the Lagrangian relaxation is that the constraints

yij ≤ xj , i = 1, . . . ,m, j = 1, . . . , d

give rise to a totally unimodular constraint matrix. Therefore, it follows that

zLR(λ) = min
m∑
i=1

d∑
j=1

(cijdi − λi)yij +
n∑

j=1

fjxj +
m∑
i=1

λi

s.t. yij ≤ xj , i = 1, . . . ,m, j = 1, . . . , d

0 ≤ yij , xi ≤ 1, i = 1, . . . ,m, j = 1, . . . , d.

3 Subgradient algorithm for the Lagrangian dual

Given a convex function f : Rm → R and a fixed point x ∈ dom(f), the subdifferential of f at x
is defined as

∂f(x) =
{
g : f(y) ≥ f(x) + g⊤(y − x) ∀y ∈ dom(f)

}
.

Here, any g ∈ ∂f(x) is called a subgradient of f at x.

Conversely, the subdifferential is the set of subgradients. If function f is differentiable at x, then
we have ∂f(x) = {∇f(x)}, and therefore, the subdifferential reduces to the gradient. In contrast,
a non-differentiable function may have more than one subgradient. Moreover, note that for any
subgradient g at x, f(x) + g⊤(y − x) provies a lower approximation of the function f .

Recall that for a differentiable univariate function f , the gradient of f at some point x is the slope
of the line tangent to f at x. We have a similar geometric intuition for subgradients. Consider the
the absolute value function f(x) = |x| over x ∈ R, which is not differentiable at x = 0.
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Figure 20.1: Subgradients of f(x) = |x| at x = 0

Proposition 20.2. Let x̄ be an optimal solution to the Lagrangian relaxation with respect to λ̄.
Then f − Ex̄ is a subgradient of zLR at λ̄.

Proof. For any λ ≥ 0, we have

zLR(λ) ≥ c⊤x̄+ λ⊤(f − Ex̄)

= c⊤x̄+ λ̄⊤(f − Ex̄) + (λ− λ̄)⊤(f − Ex̄)

= zLR(λ̄) + (λ− λ̄)⊤(f − Ex̄).

Therefore, f −Ax̄ is a subgradient of zLR at λ̄, as required.

Recall that solving the Lagrangian dual problem is equivalent to minimizing the Lagrangian relax-
ation function. We may apply the subgradient method.

Algorithm 1 Subgradient method

Initialize λ1 ∈ dom(zLR).
for t = 1, . . . , T do

Solve the Lagrangian relaxation with respect to λt.
Obtain f − Ext where xt is an optimal solution to the Lagrangian relaxation.
Update λt+1 = [λt − ηt(f − Ext)]+ for some step size ηt > 0.

end for

In Algorithm 1, we have

λt+1 = [λt − ηt(f − Ext)]+ = projRm
+
(λt − ηt(f − Ext)) .

Basically, [λt − ηt(f − Ext)]+ is obtained from λt − ηt(f −Ext) after replacing each of its negative
components by 0.

How do we set up the step sizes {ηt}Tt=1?

Theorem 20.3 (Poljak, 1967). Suppose that

∞∑
t=1

ηt = +∞ and lim
t→∞

ηt = 0.

Then the subgradient method (Algorithm 1) converges to zLD, the Lagrangian dual value.
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An example is ηt = 1/
√
t. Then the convergence rate is O(1/

√
T ), which is the optimal rate for

general convex functions. However, for the Lagrangian dual of a mixed-integer program, it is often
the case that the subgradient method with a Poljak rule converges very slow.

An alternate choice is a geometric series, i.e.,

ηt = η0ρ
t, ρ ∈ (0, 1).

With a geometric series, the subgradient method converges very fast, but not necessarily to the
optimum. However, this may not be a critical issue in the context of branch-and-bound.
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