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1 Introduction to integer programming

Many real-world decision-making problems require decisions over a discrete set of available choices.
Integer programming provides a general and comprehensive framework to model such decision-
making settings. With the success of modern integer programming software such as Gurobi,
CPLEX, and Xpress, integer programming is arguably the most prevalent optimization framework
in operations research and business analytics.

Let us consider a toy example. First, the following is a simple linear program (LP) with two
variables.

max 4x+ 5y

s.t. x+ 3y ≤ 10,

3x+ y ≤ 10,

x, y ≥ 0.

We can draw the feasible region of this LP as in (1.1). We know that linear programming is “easy”

Figure 1.1: Depicting the feasible region of the linear and integer programs

in that there is a polynomial time algorithm for solving linear programs, such as the ellipsoid
method and the interior point method. By solving the linear program, we know that the optimal
solution is (x, y) = (5/2, 5/2) which is at the intersection of two lines x+ 3y = 10 and 3x+ y = 10.
What if we want a solution whose componets are all integers?

max 4x+ 5y

s.t. x+ 3y ≤ 10,

3x+ y ≤ 10,

x, y ≥ 0,

(x, y) ∈ Z2.

1



Basically, we add an additional condition that (x, y) ∈ Z2, where Z denotes the set of integers,
to the above linear program. In Figure 1.1, the red dots depict the set of solutions that satisfy
the linear inequalities and the integrality condition. In fact, the second optimization problem
is called an integer program. As the objective function and the other constraints are given by
linear functions, the optimization problem is also referred to as an integer linear program.

What is an optimal solution to the integer program? The first attempt is to look at the optimal
solution to the linear program, which is (5/2, 5/2), and round the components to the nearest
integers. However, there are a couple of issues with the rounding procedure.

1. There can be many integer solutions obtained from rounding the optimal solution to the linear
program. We may round 5/2 to 2 or 3. Hence, (2, 2), (2, 3), (3, 2), and (3, 3) may be obtained
from rounding (5/2, 5/2). When the number of variables is d, the number of solutions from
rounding is up to 2d.

2. We cannot guarantee the feasibility of solutions obtained from rounding. (2, 2) is feasible,
but (2, 3), (3, 2), and (3, 3) are all infeasible.

3. More importantly, it is not always the case that there is an optimal solution from the list of
solutions obtained from rounding. In fact, the optimal solution to the our integer program is
given by (1, 3).

Therefore, linear programming combined with rounding does not necessary solve integer program-
ming. It turns out that integer programming is NP -hard, which implies that there would be no
polynomial time algorithm unless P = NP . Integer programming includes difficult problems in
computer science such as Satisfiability and the Traveling Salesman Problem (TSP). Furthermore,
linear programming is a class of convex optimization, while the set of solutions to a integer program
is discrete and thus non-convex. These computational challenges require methodologies that deal
with the discrete nature of integer programming, which has motivated an extensive research on
integer programming both in theory and practice.

2 Brief history of integer programming

In fact, integer programming has a long histroy shortly after George B. Dantzig developed the
simplex method for linear programming. Since then, integer programming models for combina-
torial optimization were extensively studied both in theory and practice. For example, Dantzig,
Fulkerson, and Johnson [6, 7] in the 1950’s developed an integer programming formulation for the
Traveling Salesman Problem (TSP), which was the precursor of the now-called branch-and-cut
algorithm. In 1965, Jack Edmonds [8] developed the blossom algorithm for the matching problem
based on integer programming. There were massive activities in the 1970’s and 1980’s on devel-
oping integer programming formulations for discrete optimization problems that arise in business
operations.

In the 1990’s and 2000’s, the research community advanced the technology of general purpose
cutting-planes that can be implemented in branch-and-bound algorithms. Here, “general” means
that the cutting planes work for arbitrary integer programs not just for some specific formulations.
This development led to the modern success of integer programming software. In fact, the history
of general purpose cuts dates back to 1958 when Ralph Gomory developed Gomory’s fractional
cuts and the first convergent cutting plane algorithm for pure integer programs [9]. Later in
1963, he developed Gomory’s mixed integer cuts for mixed integer programs [10]. However,
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until the mid 1990’s, it was a common belief that Gomory’s cuts are useless in practice and that
one has to exploit the underlying combinatorial structure of a given problem [5]. In the summer
of 1993, Sebastian Ceria and Gérard Cornuéjols obtained the first successful implementation of
Gomory’s mixed integer cuts and demonstrated that Gomory’s cuts are indeed powerful [2, 5].
Later on, various general purpose cutting planes have been proposed and studied, such as split
cuts, disjunctive cuts, and mixed-integer rounding cuts.

In modern days, integer programming is being used in machine learning and data-driven decision
making problems as well. Let us mention a few that are important in the literature.

• Sparse regression [3].

• Neural network verification [1].

• Learning bayesian networks [13].

• Sample average approximation for chance-constrained programming [15, 14].

• Distributionally robust chance-constrained programming [4, 16, 11, 12].

3 Some integer programming formulations

Before we formally state and define what it is, let us discuss a few exciting integer programming
models from combinatorial optimization, machine learning, and data-driven decision making.

3.1 Bipartite matching

A bipartite graph is a graph G = (V,E) where

• the vertex set V is partitioned into two sets V1 and V2,

• each edge e ∈ E crosses the partition, i.e. e has one end in V1 and the other end in V2.

For example, Figure 1.2 shows a bipartite graph on 7 vertices where one set contains 3 and the
other has 4. A matching is a set of edges without common vertices. In Figure 1.2, the set of green

Figure 1.2: Bipartite graph and a matching
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edges gives rise to a matching.

Suppose that each edge e ∈ E has a weight we. Given a set of edges F , the weight of F is defined
as the sum of weights of the edges in F , given by,

∑
e∈F we. The matching problem is to find a

matching that has the maximum weight.

The matching problem has numerous applications such as auctions and scheduling. The matching
problem can be formulated as the following integer program.

min
∑
e∈E

wexe

s.t.
∑
e∈δ(v)

xe ≤ 1, ∀v ∈ V,

xe ∈ {0, 1}, ∀e ∈ E

where for v ∈ V ,
δ(v) = {e ∈ E : one end of e is v} .

In fact, the integer program is a valid formulation for the matching problem even ifG is not bipartite.
When G is bipartite, we will see that we may replace the integrality constraint xe ∈ {0, 1} for e ∈ E
by

0 ≤ xe ≤ 1 or xe ∈ [0, 1], ∀e ∈ E.

In other words, the following linear program

min
∑
e∈E

wexe

s.t.
∑
e∈δ(v)

xe ≤ 1, ∀v ∈ V,

0 ≤ xe ≤ 1, ∀e ∈ E

solves the bipartite matching problem. The linear program is called the LP relaxation of the
integer program.

One might wonder when it is the case that the LP relaxation computes an integer optimal solution.
This is not always true, and we will study some sufficient conditions under which the LP relaxation
is equivalent to the given integer program.

3.2 Sparse regression

Let (x1, y1), . . . , (xn, yn) be n data points where x is the vector of features and y is the response
variable. We want to infer a linear model

y = β>x

from the data set. The mean squared error (MSE) is given by

1

n

n∑
i=1

(
yi − β>xi

)2
.

To find a valid β, one would minimize

MSE + Regularization.
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Here, sparse regression corresponds to applying the `0 regularization term where

‖β‖0 = |{βi : βi 6= 0}| ,

that is, the number of nonzero components in β. We solve

min
β

1

n

n∑
i=1

(
yi − β>xi

)2
+ λ‖β‖0

where λ is some penalty parameter. The `0 regularization term is non-convex and in fact combi-
natorial. The following is an equivalent reformulation of the problem. For some sufficiently large
M > 0, we consider

min
1

n

n∑
i=1

(
yi − β>xi

)2
+ λ

∑
j∈[d]

zj

s.t. −Mzj ≤ βj ≤Mzj , ∀j ∈ [d],

zj ∈ {0, 1}, ∀j ∈ [d].

Here, the coefficient M is often referred to as the big-M . The computational tractability of
this integer programming formulation heavily depends on the value of M . When M is large, the
constraint −Mzj ≤ βj ≤Mzj is too loose. On the other hand, we cannot set M arbitrarily small,
for otherwise, the formulation will be invalid. There have been various techniques developed for
improving the formulation.

References

[1] Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., Vielma J.P.: Strong mixed-integer
programming formulations for trained neural networks. Mathematical Programming 183,
3–39 (2020) 2
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