IE 631 Integer Programming KAIST, Spring 2023
Lecture #19: Lagrangian relaxation and Lagrangian dual May 9, 2023
Lecturer: Dabeen Lee

1 Outline

In this lecture, we study

e Lagrangian relaxation,

e Lagrangian dual,

2 Lagrangian relaxation

Let us consider a mixed integer program

T

ZzZI = max c¢'x
st. Ax <b MIP
Br<f (MIP)

z€Zi x RE.

Assume that Fx < f are complicating constraints in the sense that optimization without the
constraints is easy. More precisely, assume that mixed integer programs of the following form are
easy to solve:

max h'z
st. Az <b
zeZl xRY.
Let @ be defined as
Q:{xezixRi;Axgb}

Assume that () is nonempty and that A,b have rational entries. Let m be the number of rows of
E, and take A € R". Then we may define the Lagrangian relaxation of (MIP) with respect to
A as follows.

zr(\) = max c¢'z+ N (f — Ex)
st. Az <b (LR)
xeZl xRY.
Proposition 19.1. z;r(\) > 21 for any A > 0.
Proof. Let z* be an optimal solution to (MIP). In particular, x* satisfies
Az* <b, Ex* < f, 2* € Z% x RE..

Then z* is also feasible to the Lagrangian relaxation (LR). Moreover, as Ez* < f and A > 0, it
follows that
A (f — Ex*) >0,
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implying in turn that
2N > et + AT (f — Ex*) > el a* = 2.

Therefore, zpr(A) > z; for any A > 0, as required. O

What is the advantage of working with the Lagrangian relaxation? We assumed that Fx < f
are complicating constraints and that optimization over @ is easier than solving (MIP). More-
over, Proposition 19.1 implies that the Lagrangian relaxation (LR) provides a valid upper bound
on (MIP).

Next, we define the Lagrangian dual of the mixed integer program (MIP).
zip = min{zr(A): A>0}. (LD)

Hence, zpp is the best possible/tightest upper bound on (MIP) achievable through Lagrangian
relaxations.

Theorem 19.2. z;p satisfies the following.
ZLp = max {CTSL‘ c Ex<f ze conv(Q)} .

Proof. As @) is a mixed-integer set defined by Az < b, a rational system of linear inequalities,
Meyer’s theorem implies that

conv(Q) = {:L‘ ERIXRP: Az < b'}
for some A’, b’ with rational entries. First, observe that
2Lr(A) = max {ch + A (f-—Ez): z¢€ Q}
= max {cTa: + A (f—Ez): z € conv(Q)}
= max {cTa? + A (f—Ez): Az < b'}

where the second equality holds because ¢’z + AT (f — Ex) is a linear function. By strong LP
duality,

zr(\) = min b Tp+ fTA
st. ATp>c—ETA
pn e RY

where m/ is the number of rows of A’. This equality holds even when zpg(A) is unbounded. Then
it follows that

2o = min VT pu+ fTA
st. ATu+E"XA>¢
peRY, XeRT.

Then by strong LP duality again,

Z1.D = max CTJJ
st. Az <V
Ex < f

zeRE xRE.



Therefore,
21D = max {ch s Bx<f xe€ conv(Q)} ,

as required. O

By the Minkowski-Weyl theorem, conv(Q) can be expressed as

conv(Q)) = conv {vl, . ,v”} + cone {rl, o ,rg}
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where v!, ..., v" are the extreme points of conv(Q) and r!, ..., r¢ are the extreme rays of conv(Q).
) p 9y

We may view zpr(\) as a function of A.

Lemma 19.3. The domain of zpgr is given by
dom(zzp) = {)\ ERT: (c—E'NTr <0, Vje [e]} .
Proof. Note that z;r()) is finite if and only if (¢ — ETA)Tr7 <0 for all 5 € [4]. O

Theorem 19.4. zyr is a convex piecewise linear function of A over dom(zpR).

Proof. Let A\ € dom(zr). Since
2zLr(A) = max {cTa: + A (f-Ez): z¢€ conv(Q)}

and A
(c—E"NTr <0

for all j € [¢], it follows that
2Lr(A) = max {fT)\ +(c—E"™N)W: je [n]} .
Therefore, zr(A) is the maximum of linear functions
v+ (f—EV)TN, jen)
Hence, zpr(\) is convex piecewise linear. O

Theorem 19.5. Let zrp denote the optimal value of the LP relazation of (MIP). Then

zip < zZLp < ZLp.

Proof. Note that
{xeRde”: Ex < f, xEQ}Q{weRdep: Ex < f, xEQ}
g{xERdep: Ex < f, Az <D, 3320}.

Therefore, z;p < zpp < zrp, as required. ]

Theorem 19.6. We have zpp = zpp if

conv(Q) = {x eR? xRE : Az < b}.
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