
IE 631 Integer Programming KAIST, Spring 2023
Lecture #19: Lagrangian relaxation and Lagrangian dual May 9, 2023
Lecturer: Dabeen Lee

1 Outline

In this lecture, we study

• Lagrangian relaxation,

• Lagrangian dual,

2 Lagrangian relaxation

Let us consider a mixed integer program

zI = max c⊤x

s.t. Ax ≤ b

Ex ≤ f

x ∈ Zd
+ × Rp

+.

(MIP)

Assume that Ex ≤ f are complicating constraints in the sense that optimization without the
constraints is easy. More precisely, assume that mixed integer programs of the following form are
easy to solve:

max h⊤x

s.t. Ax ≤ b

x ∈ Zd
+ × Rp

+.

Let Q be defined as

Q =
{
x ∈ Zd

+ × Rp
+ : Ax ≤ b

}
.

Assume that Q is nonempty and that A, b have rational entries. Let m be the number of rows of
E, and take λ ∈ Rm

+ . Then we may define the Lagrangian relaxation of (MIP) with respect to
λ as follows.

zLR(λ) = max c⊤x+ λ⊤(f − Ex)

s.t. Ax ≤ b

x ∈ Zd
+ × Rp

+.

(LR)

Proposition 19.1. zLR(λ) ≥ zI for any λ ≥ 0.

Proof. Let x∗ be an optimal solution to (MIP). In particular, x∗ satisfies

Ax∗ ≤ b, Ex∗ ≤ f, x∗ ∈ Zd
+ × Rp

+.

Then x∗ is also feasible to the Lagrangian relaxation (LR). Moreover, as Ex∗ ≤ f and λ ≥ 0, it
follows that

λ⊤(f − Ex∗) ≥ 0,
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implying in turn that
zLR(λ) ≥ c⊤x∗ + λ⊤(f − Ex∗) ≥ c⊤x∗ = zI .

Therefore, zLR(λ) ≥ zI for any λ ≥ 0, as required.

What is the advantage of working with the Lagrangian relaxation? We assumed that Ex ≤ f
are complicating constraints and that optimization over Q is easier than solving (MIP). More-
over, Proposition 19.1 implies that the Lagrangian relaxation (LR) provides a valid upper bound
on (MIP).

Next, we define the Lagrangian dual of the mixed integer program (MIP).

zLD = min {zLR(λ) : λ ≥ 0} . (LD)

Hence, zLD is the best possible/tightest upper bound on (MIP) achievable through Lagrangian
relaxations.

Theorem 19.2. zLD satisfies the following.

zLD = max
{
c⊤x : Ex ≤ f, x ∈ conv(Q)

}
.

Proof. As Q is a mixed-integer set defined by Ax ≤ b, a rational system of linear inequalities,
Meyer’s theorem implies that

conv(Q) =
{
x ∈ Rd × Rp : A′x ≤ b′

}
for some A′, b′ with rational entries. First, observe that

zLR(λ) = max
{
c⊤x+ λ⊤(f − Ex) : x ∈ Q

}
= max

{
c⊤x+ λ⊤(f − Ex) : x ∈ conv(Q)

}
= max

{
c⊤x+ λ⊤(f − Ex) : A′x ≤ b′

}
where the second equality holds because c⊤x + λ⊤(f − Ex) is a linear function. By strong LP
duality,

zLR(λ) = min b′⊤µ+ f⊤λ

s.t. A′⊤µ ≥ c− E⊤λ

µ ∈ Rm′
+

where m′ is the number of rows of A′. This equality holds even when zLR(λ) is unbounded. Then
it follows that

zLD = min b′⊤µ+ f⊤λ

s.t. A′⊤µ+ E⊤λ ≥ c

µ ∈ Rm′
+ , λ ∈ Rm

+ .

Then by strong LP duality again,

zLD = max c⊤x

s.t. A′x ≤ b′

Ex ≤ f

x ∈ Rd
+ × Rp

+.
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Therefore,

zLD = max
{
c⊤x : Ex ≤ f, x ∈ conv(Q)

}
,

as required.

By the Minkowski-Weyl theorem, conv(Q) can be expressed as

conv(Q) = conv
{
v1, . . . , vn

}
+ cone

{
r1, . . . , rℓ

}
where v1, . . . , vn are the extreme points of conv(Q) and r1, . . . , rℓ are the extreme rays of conv(Q).
We may view zLR(λ) as a function of λ.

Lemma 19.3. The domain of zLR is given by

dom(zLR) =
{
λ ∈ Rm

+ : (c− E⊤λ)⊤rj ≤ 0, ∀j ∈ [ℓ]
}
.

Proof. Note that zLR(λ) is finite if and only if (c− E⊤λ)⊤rj ≤ 0 for all j ∈ [ℓ].

Theorem 19.4. zLR is a convex piecewise linear function of λ over dom(zLR).

Proof. Let λ ∈ dom(zLR). Since

zLR(λ) = max
{
c⊤x+ λ⊤(f − Ex) : x ∈ conv(Q)

}
and

(c− E⊤λ)⊤rj ≤ 0

for all j ∈ [ℓ], it follows that

zLR(λ) = max
{
f⊤λ+ (c− E⊤λ)⊤vj : j ∈ [n]

}
.

Therefore, zLR(λ) is the maximum of linear functions

c⊤vj + (f − Evj)⊤λ, j ∈ [n].

Hence, zLR(λ) is convex piecewise linear.

Theorem 19.5. Let zLP denote the optimal value of the LP relaxation of (MIP). Then

zIP ≤ zLD ≤ zLP .

Proof. Note that{
x ∈ Rd × Rp : Ex ≤ f, x ∈ Q

}
⊆

{
x ∈ Rd × Rp : Ex ≤ f, x ∈ Q

}
⊆

{
x ∈ Rd × Rp : Ex ≤ f, Ax ≤ b, x ≥ 0

}
.

Therefore, zIP ≤ zLD ≤ zLP , as required.

Theorem 19.6. We have zLD = zLP if

conv(Q) =
{
x ∈ Rd

+ × Rp
+ : Ax ≤ b

}
.
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