1 Outline

In this lecture, we study

- Lagrangian relaxation,
- Lagrangian dual,

2 Lagrangian relaxation

Let us consider a mixed integer program

$$
\begin{align*}
z_{I}=\max & c^{\top} x \\
\text { s.t. } & A x \leq b \\
& E x \leq f \tag{MIP}\\
& x \in \mathbb{Z}_{+}^{d} \times \mathbb{R}_{+}^{p} .
\end{align*}
$$

Assume that $E x \leq f$ are complicating constraints in the sense that optimization without the constraints is easy. More precisely, assume that mixed integer programs of the following form are easy to solve:

$$
\begin{aligned}
\max & h^{\top} x \\
\text { s.t. } & A x \leq b \\
& x \in \mathbb{Z}_{+}^{d} \times \mathbb{R}_{+}^{p} .
\end{aligned}
$$

Let Q be defined as

$$
Q=\left\{x \in \mathbb{Z}_{+}^{d} \times \mathbb{R}_{+}^{p}: A x \leq b\right\} .
$$

Assume that Q is nonempty and that A, b have rational entries. Let m be the number of rows of E, and take $\lambda \in \mathbb{R}_{+}^{m}$. Then we may define the Lagrangian relaxation of (MIP) with respect to λ as follows.

$$
\begin{array}{rll}
z_{\mathrm{LR}}(\lambda)=\max & c^{\top} x+\lambda^{\top}(f-E x) \\
\text { s.t. } & A x \leq b \tag{LR}\\
& x \in \mathbb{Z}_{+}^{d} \times \mathbb{R}_{+}^{p} .
\end{array}
$$

Proposition 19.1. $z_{L R}(\lambda) \geq z_{I}$ for any $\lambda \geq 0$.
Proof. Let x^{*} be an optimal solution to (MIP). In particular, x^{*} satisfies

$$
A x^{*} \leq b, E x^{*} \leq f, x^{*} \in \mathbb{Z}_{+}^{d} \times \mathbb{R}_{+}^{p}
$$

Then x^{*} is also feasible to the Lagrangian relaxation (LR). Moreover, as $E x^{*} \leq f$ and $\lambda \geq 0$, it follows that

$$
\lambda^{\top}\left(f-E x^{*}\right) \geq 0,
$$

implying in turn that

$$
z_{\mathrm{LR}}(\lambda) \geq c^{\top} x^{*}+\lambda^{\top}\left(f-E x^{*}\right) \geq c^{\top} x^{*}=z_{I} .
$$

Therefore, $z_{\mathrm{LR}}(\lambda) \geq z_{I}$ for any $\lambda \geq 0$, as required.
What is the advantage of working with the Lagrangian relaxation? We assumed that $E x \leq f$ are complicating constraints and that optimization over Q is easier than solving (MIP). Moreover, Proposition 19.1 implies that the Lagrangian relaxation (LR) provides a valid upper bound on (MIP).
Next, we define the Lagrangian dual of the mixed integer program (MIP).

$$
\begin{equation*}
z_{\mathrm{LD}}=\min \left\{z_{\mathrm{LR}}(\lambda): \lambda \geq 0\right\} . \tag{LD}
\end{equation*}
$$

Hence, $z_{\text {LD }}$ is the best possible/tightest upper bound on (MIP) achievable through Lagrangian relaxations.

Theorem 19.2. $z_{L D}$ satisfies the following.

$$
z_{L D}=\max \left\{c^{\top} x: E x \leq f, x \in \operatorname{conv}(Q)\right\} .
$$

Proof. As Q is a mixed-integer set defined by $A x \leq b$, a rational system of linear inequalities, Meyer's theorem implies that

$$
\operatorname{conv}(Q)=\left\{x \in \mathbb{R}^{d} \times \mathbb{R}^{p}: A^{\prime} x \leq b^{\prime}\right\}
$$

for some A^{\prime}, b^{\prime} with rational entries. First, observe that

$$
\begin{aligned}
z_{\mathrm{LR}}(\lambda) & =\max \left\{c^{\top} x+\lambda^{\top}(f-E x): x \in Q\right\} \\
& =\max \left\{c^{\top} x+\lambda^{\top}(f-E x): x \in \operatorname{conv}(Q)\right\} \\
& =\max \left\{c^{\top} x+\lambda^{\top}(f-E x): A^{\prime} x \leq b^{\prime}\right\}
\end{aligned}
$$

where the second equality holds because $c^{\top} x+\lambda^{\top}(f-E x)$ is a linear function. By strong LP duality,

$$
\begin{array}{rll}
z_{\mathrm{LR}}(\lambda)=\min & b^{\prime \top} \mu+f^{\top} \lambda \\
\text { s.t. } & A^{\prime \top} \mu \geq c-E^{\top} \lambda \\
& \mu \in \mathbb{R}_{+}^{m^{\prime}}
\end{array}
$$

where m^{\prime} is the number of rows of A^{\prime}. This equality holds even when $z_{\mathrm{LR}}(\lambda)$ is unbounded. Then it follows that

$$
\begin{aligned}
z_{\mathrm{LD}}=\min & b^{\prime \top} \mu+f^{\top} \lambda \\
\text { s.t. } & A^{\prime \top} \mu+E^{\top} \lambda \geq c \\
& \mu \in \mathbb{R}_{+}^{m^{\prime}}, \lambda \in \mathbb{R}_{+}^{m} .
\end{aligned}
$$

Then by strong LP duality again,

$$
\begin{aligned}
z_{\mathrm{LD}}=\max & c^{\top} x \\
\text { s.t. } & A^{\prime} x \leq b^{\prime} \\
& E x \leq f \\
& x \in \mathbb{R}_{+}^{d} \times \mathbb{R}_{+}^{p} .
\end{aligned}
$$

Therefore,

$$
z_{\mathrm{LD}}=\max \left\{c^{\top} x: E x \leq f, x \in \operatorname{conv}(Q)\right\}
$$

as required.
By the Minkowski-Weyl theorem, $\operatorname{conv}(Q)$ can be expressed as

$$
\operatorname{conv}(Q)=\operatorname{conv}\left\{v^{1}, \ldots, v^{n}\right\}+\operatorname{cone}\left\{r^{1}, \ldots, r^{\ell}\right\}
$$

where v^{1}, \ldots, v^{n} are the extreme points of $\operatorname{conv}(Q)$ and r^{1}, \ldots, r^{ℓ} are the extreme rays of $\operatorname{conv}(Q)$. We may view $z_{\mathrm{LR}}(\lambda)$ as a function of λ.

Lemma 19.3. The domain of $z_{L R}$ is given by

$$
\operatorname{dom}\left(z_{L R}\right)=\left\{\lambda \in \mathbb{R}_{+}^{m}:\left(c-E^{\top} \lambda\right)^{\top} r^{j} \leq 0, \quad \forall j \in[\ell]\right\}
$$

Proof. Note that $z_{\mathrm{LR}}(\lambda)$ is finite if and only if $\left(c-E^{\top} \lambda\right)^{\top} r^{j} \leq 0$ for all $j \in[\ell]$.
Theorem 19.4. $z_{L R}$ is a convex piecewise linear function of λ over $\operatorname{dom}\left(z_{L R}\right)$.
Proof. Let $\lambda \in \operatorname{dom}\left(z_{\mathrm{LR}}\right)$. Since

$$
z_{\mathrm{LR}}(\lambda)=\max \left\{c^{\top} x+\lambda^{\top}(f-E x): x \in \operatorname{conv}(Q)\right\}
$$

and

$$
\left(c-E^{\top} \lambda\right)^{\top} r^{j} \leq 0
$$

for all $j \in[\ell]$, it follows that

$$
z_{\mathrm{LR}}(\lambda)=\max \left\{f^{\top} \lambda+\left(c-E^{\top} \lambda\right)^{\top} v^{j}: j \in[n]\right\}
$$

Therefore, $z_{\mathrm{LR}}(\lambda)$ is the maximum of linear functions

$$
c^{\top} v^{j}+\left(f-E v^{j}\right)^{\top} \lambda, \quad j \in[n] .
$$

Hence, $z_{\mathrm{LR}}(\lambda)$ is convex piecewise linear.
Theorem 19.5. Let $z_{L P}$ denote the optimal value of the LP relaxation of (MIP). Then

$$
z_{I P} \leq z_{L D} \leq z_{L P}
$$

Proof. Note that

$$
\begin{aligned}
\left\{x \in \mathbb{R}^{d} \times \mathbb{R}^{p}: E x \leq f, x \in Q\right\} & \subseteq\left\{x \in \mathbb{R}^{d} \times \mathbb{R}^{p}: E x \leq f, x \in Q\right\} \\
& \subseteq\left\{x \in \mathbb{R}^{d} \times \mathbb{R}^{p}: E x \leq f, A x \leq b, x \geq 0\right\}
\end{aligned}
$$

Therefore, $z_{I P} \leq z_{L D} \leq z_{L P}$, as required.
Theorem 19.6. We have $z_{L D}=z_{L P}$ if

$$
\operatorname{conv}(Q)=\left\{x \in \mathbb{R}_{+}^{d} \times \mathbb{R}_{+}^{p}: A x \leq b\right\}
$$

