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1 Outline

In this lecture, we study

e Lift-and-project procedure,
e Lovasz-Schrijver hierarchy,

e Sherali-Adams hierarchy.

2 Lift-and-project for mixed 0,1 programs

Let us consider
P:{xeRdep: Az <V, ngjglwe[d}}.

Let us assume that Az < b consists of inequalities A’z < and 0 < z; <1 for j € [d]. Hence, we
have
P:{xeRdep: Aa;gb}.

We define S as
S =Pn(zxRP).

Since x € P satisfies 0 < x; <1 for j € [d], it follows that
S C{0,1}¢ x RP.

Hence z1, ..., x4 are binary variables, and 2441, ..., %44, are continuous variables.

For any j € [d], we may define a split as follows.
{reP: z;<0}U{zeP: z;>1}.

Here, if x € P and z; <0, then we have x; = 0 because any x € P satisfies 0 < x; < 1. Similarly,
if z € P and x; > 1, then we have x; = 1. Therefore, the split is equivalent to

{reP: z;=0tU{zeP: z;=1}.
Next we define P; as the convex hull of the split:
Pi=conv({reP: z;=0fU{z e P: z; =1}).

To obtain Pj, we may need to apply many split cuts. Instead, we attempt to deduce a description
of P; in a higher dimensional space than R? x RP by introducing some auxiliary variables. If this is
possible, then P; would be given by the projection of a polyhedron in a higher dimensional space.
This idea of describing P; in a higher dimensional space and taking projection is referred to as
lift-and-project [BCC93].

The lift-and-project due to Balas, Ceria, and Cornuéjols [BCC93] procedure proceeds as follows.
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1. Choose j € [d].
2. Generate the following nonlinear system from 0 < z; <1 and Az <b.
zj(Az —b) <0,
(1 —=;)(Az —b) <0.
This is equivalent to

aijasz - bil'j + Z Qi TpTj < 0, € [m],

k#j
d+p
2 .
Zaikxk —b; — AT + bil’j — Z Qi TRTj < 0, € [m],
k=1 oy

P

where Az < b consists of m constraints Zii aigxy < b; for i € [m].

1
3. Substitute y; for xyx; for £ # j and x; for %? and deduce

QijTj — bixj + Zaikyk <0, 1€ [m],

k#j
d+p
Z a;pxr — b; — Qx5 + bia:j — Zaikyk <0, 1€ [m]
k=1 k#£j

This system consists of linear inequalities only in terms of x and y variables. Let M; denote
the polyhedron that this system defines.

4. Project out the y variables from M; to obtain proj,(M;).
Theorem 18.1 (Balas, Ceria, and Cornuéjols [BCC93]). For every j € [d],
proj,(M;) = Pj=conv({x € P: z; =0}U{x e P: z; =1}).
Proof. By the theorem on union of polytopes due to Balas,
conv({reP: z;=0}U{zeP: z;=1})
can be described as the following linear system.
Az' < bA
azjl =
Az <b(1-N)
33? =0
e+’ =z
0<A< 1.

In other words, we obtain the convex hull after projecting out the variables z!, 2% A\. Next we
substitute 2° =  — z! and replace z! by y. Then we deduce

Ay < bA
yi = A

Az —y) <b(1=2)
Y = j
0<AL T
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Substituting A = x;, it follows that

Ay < bx;
Az —y) < b(1 — )
Yy =7Tj
0<z; <1.
Here, 0 < z; <1 is implied by Ay < bz; and A(x —y) < b(1 — z;). Then we obtain
Ay —bx; <0
(Az —b) + (Ay — bx;) <0
yj = ;.

This system is precisely what defines M;. Therefore,
conv({xre P: 2; =0yU{x € P: z; =1}) = proj,(M;),
as required. ]

Note that M, is defined by 2m inequality constraints and (d +p — 1) +d = 2(d + p) — 1 variables
because the number of y variables is d + p — 1. Then we can consider

() P = () proj,(M;).
Jjeld] j€ld
By definition, we have
SgPSPhtg m Png
Jj€ld]

where PPlit denotes the split closure of P. In particular, we obtain a tighter relaxation than P.
Moreover, to obtain the intersection of P;’s, we need 2dm constraints and

dd+p—1)+d+p
variables. Therefore, the encoding size of the intersection is polynomial in the encoding size of P.

The following theorem is referred to as the sequential convexification theorem.

Theorem 18.2 (Balas [Bal74, Bal98]). The convez hull conv(S) of S can be obtained by sequentially
taking the convex hull with respect to individual components, i.e.,

conv(S) = ( o ((P1)2>3 T )d'
3 The Lovasz-Schrijver construction

The lift-and-project procedure proposed by Lovész and Schrijver [LS91] is the following.

1. Generate the following nonlinear system from 0 <z; <1 for j =1,...,d and Az <b.
z1(Az —b) <0,
(1 —z1)(Ax —b) <0,
x2(Az —b) <0,
(1 —x92)(Axz —0) <0,
zq(Az —b) <0,
(1 —24)(Az —b) <0.



2. Substitute yp; = wpx; for every pair of distinct k,j € [d + pl, set y;; = yji, and substitute
xj= a:? for j € [d]. Let M(P) denote the resulting polyhedron in the (x,y)-space.

3. Project out the y variables, and obtain N(P) = proj, (M (P)). Here, N(P) is a polyhedron.

Theorem 18.3 (Lovasz and Schrijver [LS91]). The Lovdsz-Schrijver construction satisfies

NP)< () P
Jj€ld]

We may further strengthen the Lovasz-Schrijver construction. Let Y denote the d x d matrix whose
off-diagonal entries are given by y;; for i # j € [d] and whose diagonal entries are given by x; for
i € [d]. Note that y;; = z;x; and z; = x2. This implies that

Y =zz'.
Then we know that Y is positive semidefinite (PSD). Based on this fact, we define
M*(P) ={(z,y) € M(P): Y = 0}.

Then we define N (P) as
N*(P) = proj,(M " (P)).

Here, M (P) is not a polyhedron anymore, due to the PSD constraint ¥ = 0. Nevertheless, it
follows from the definition that
NT(P) C N(P).

4 The Sherali-Adams construction

The lift-and-project procedure proposed by Sherali and Adams [SA90] is the following.
1. Choose a number t € {1,...,d}.

2. For any pair of disjoint subsets J; and Jo such that J; U Jo C [d] and |J; U Jo| = t, generate
the following nonlinear system.

I [T =)z —b) <o

JjeJL JjEJ2

3. Substitute x; for l‘?, substitute wy = [[;c;2; for any J C [d], and substitute vy =
z[[jeyz; for any J C [d] and k > d + 1. Let X;(P) denote the resulting polyhedron
in the (z,w, v)-space.

4. Project out the w and v variables, and obtain K;(P). Here, K;(P) is a polyhedron.
Theorem 18.4 (Sherali and Adams [SA90]). K4(P) = conv(S5).
Theorem 18.5 (Balas, Ceria, and Cornuéjols [BCC93]). Fort=1,...,d,
Kt(P) - ("‘((P1)2)3"')t'
Theorem 18.6. Fort=1,...,d,
Ki(P)S N(N(---N(P)---))

t recursive applications
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