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1 Outline

In this lecture, we study

• Lift-and-project procedure,

• Lovász-Schrijver hierarchy,

• Sherali-Adams hierarchy.

2 Lift-and-project for mixed 0,1 programs

Let us consider
P =

{
x ∈ Rd × Rp : A′x ≤ b′, 0 ≤ xj ≤ 1 ∀j ∈ [d]

}
.

Let us assume that Ax ≤ b consists of inequalities A′x ≤ b′ and 0 ≤ xj ≤ 1 for j ∈ [d]. Hence, we
have

P =
{
x ∈ Rd × Rp : Ax ≤ b

}
.

We define S as
S = P ∩ (Zd × Rp).

Since x ∈ P satisfies 0 ≤ xj ≤ 1 for j ∈ [d], it follows that

S ⊆ {0, 1}d × Rp.

Hence x1, . . . , xd are binary variables, and xd+1, . . . , xd+p are continuous variables.

For any j ∈ [d], we may define a split as follows.

{x ∈ P : xj ≤ 0} ∪ {x ∈ P : xj ≥ 1} .

Here, if x ∈ P and xj ≤ 0, then we have xj = 0 because any x ∈ P satisfies 0 ≤ xj ≤ 1. Similarly,
if x ∈ P and xj ≥ 1, then we have xj = 1. Therefore, the split is equivalent to

{x ∈ P : xj = 0} ∪ {x ∈ P : xj = 1} .

Next we define Pj as the convex hull of the split:

Pj = conv ({x ∈ P : xj = 0} ∪ {x ∈ P : xj = 1}) .

To obtain Pj , we may need to apply many split cuts. Instead, we attempt to deduce a description
of Pj in a higher dimensional space than Rd×Rp by introducing some auxiliary variables. If this is
possible, then Pj would be given by the projection of a polyhedron in a higher dimensional space.
This idea of describing Pj in a higher dimensional space and taking projection is referred to as
lift-and-project [BCC93].

The lift-and-project due to Balas, Ceria, and Cornuéjols [BCC93] procedure proceeds as follows.

1



1. Choose j ∈ [d].

2. Generate the following nonlinear system from 0 ≤ xj ≤ 1 and Ax ≤ b.

xj(Ax− b) ≤ 0,

(1− xj)(Ax− b) ≤ 0.

This is equivalent to

aijx
2
j − bixj +

∑
k ̸=j

aikxkxj ≤ 0, i ∈ [m],

d+p∑
k=1

aikxk − bi − aijx
2
j + bixj −

∑
k ̸=j

aikxkxj ≤ 0, i ∈ [m],

where Ax ≤ b consists of m constraints
∑d+p

k=1 aikxk ≤ bi for i ∈ [m].

3. Substitute yk for xkxj for k ̸= j and xj for x2j and deduce

aijxj − bixj +
∑
k ̸=j

aikyk ≤ 0, i ∈ [m],

d+p∑
k=1

aikxk − bi − aijxj + bixj −
∑
k ̸=j

aikyk ≤ 0, i ∈ [m].

This system consists of linear inequalities only in terms of x and y variables. Let Mj denote
the polyhedron that this system defines.

4. Project out the y variables from Mj to obtain projx(Mj).

Theorem 18.1 (Balas, Ceria, and Cornuéjols [BCC93]). For every j ∈ [d],

projx(Mj) = Pj = conv ({x ∈ P : xj = 0} ∪ {x ∈ P : xj = 1}) .

Proof. By the theorem on union of polytopes due to Balas,

conv ({x ∈ P : xj = 0} ∪ {x ∈ P : xj = 1})

can be described as the following linear system.

Ax1 ≤ bλ

x1j = λ

Ax0 ≤ b(1− λ)

x0j = 0

x1 + x0 = x

0 ≤ λ ≤ 1.

In other words, we obtain the convex hull after projecting out the variables x1, x0, λ. Next we
substitute x0 = x− x1 and replace x1 by y. Then we deduce

Ay ≤ bλ

yj = λ

A(x− y) ≤ b(1− λ)

yj = xj

0 ≤ λ ≤ 1.
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Substituting λ = xj , it follows that

Ay ≤ bxj

A(x− y) ≤ b(1− xj)

yj = xj

0 ≤ xj ≤ 1.

Here, 0 ≤ xj ≤ 1 is implied by Ay ≤ bxj and A(x− y) ≤ b(1− xj). Then we obtain

Ay − bxj ≤ 0

(Ax− b) + (Ay − bxj) ≤ 0

yj = xj .

This system is precisely what defines Mj . Therefore,

conv ({x ∈ P : xj = 0} ∪ {x ∈ P : xj = 1}) = projx(Mj),

as required.

Note that Mj is defined by 2m inequality constraints and (d+ p− 1) + d = 2(d+ p)− 1 variables
because the number of y variables is d+ p− 1. Then we can consider⋂

j∈[d]

Pj =
⋂
j∈[d]

projx(Mj).

By definition, we have

S ⊆ P split ⊆
⋂
j∈[d]

Pj ⊆ P

where P split denotes the split closure of P . In particular, we obtain a tighter relaxation than P .
Moreover, to obtain the intersection of Pj ’s, we need 2dm constraints and

d(d+ p− 1) + d+ p

variables. Therefore, the encoding size of the intersection is polynomial in the encoding size of P .

The following theorem is referred to as the sequential convexification theorem.

Theorem 18.2 (Balas [Bal74, Bal98]). The convex hull conv(S) of S can be obtained by sequentially
taking the convex hull with respect to individual components, i.e.,

conv(S) =
(
· · · ((P1)2)3 · · ·

)
d
.

3 The Lovász-Schrijver construction

The lift-and-project procedure proposed by Lovász and Schrijver [LS91] is the following.

1. Generate the following nonlinear system from 0 ≤ xj ≤ 1 for j = 1, . . . , d and Ax ≤ b.

x1(Ax− b) ≤ 0,

(1− x1)(Ax− b) ≤ 0,

x2(Ax− b) ≤ 0,

(1− x2)(Ax− b) ≤ 0,

...

xd(Ax− b) ≤ 0,

(1− xd)(Ax− b) ≤ 0.
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2. Substitute ykj = xkxj for every pair of distinct k, j ∈ [d + p], set yij = yji, and substitute
xj = x2j for j ∈ [d]. Let M(P ) denote the resulting polyhedron in the (x, y)-space.

3. Project out the y variables, and obtain N(P ) = projx(M(P )). Here, N(P ) is a polyhedron.

Theorem 18.3 (Lovász and Schrijver [LS91]). The Lovász-Schrijver construction satisfies

N(P ) ⊆
⋂
j∈[d]

Pj .

We may further strengthen the Lovász-Schrijver construction. Let Y denote the d×d matrix whose
off-diagonal entries are given by yij for i ̸= j ∈ [d] and whose diagonal entries are given by xi for
i ∈ [d]. Note that yij = xixj and xi = x2i . This implies that

Y = xx⊤.

Then we know that Y is positive semidefinite (PSD). Based on this fact, we define

M+(P ) = {(x, y) ∈ M(P ) : Y ⪰ 0} .

Then we define N+(P ) as
N+(P ) = projx(M

+(P )).

Here, M+(P ) is not a polyhedron anymore, due to the PSD constraint Y ⪰ 0. Nevertheless, it
follows from the definition that

N+(P ) ⊆ N(P ).

4 The Sherali-Adams construction

The lift-and-project procedure proposed by Sherali and Adams [SA90] is the following.

1. Choose a number t ∈ {1, . . . , d}.

2. For any pair of disjoint subsets J1 and J2 such that J1 ∪ J2 ⊆ [d] and |J1 ∪ J2| = t, generate
the following nonlinear system.∏

j∈J1

xj
∏
j∈J2

(1− xj)(Ax− b) ≤ 0.

3. Substitute xj for x2j , substitute wJ =
∏

j∈J xj for any J ⊆ [d], and substitute vJk =
xk

∏
j∈J xj for any J ⊆ [d] and k ≥ d + 1. Let Xt(P ) denote the resulting polyhedron

in the (x,w, v)-space.

4. Project out the w and v variables, and obtain Kt(P ). Here, Kt(P ) is a polyhedron.

Theorem 18.4 (Sherali and Adams [SA90]). Kd(P ) = conv(S).

Theorem 18.5 (Balas, Ceria, and Cornuéjols [BCC93]). For t = 1, . . . , d,

Kt(P ) ⊆
(
· · · ((P1)2)3 · · ·

)
t
.

Theorem 18.6. For t = 1, . . . , d,

Kt(P ) ⊆ N (N (· · ·N(P ) · · · ))︸ ︷︷ ︸
t recursive applications
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algorithm for mixed 0-1 programs. Mathematical Programming, 58:295–324, 1993. 2,
18.1, 18.5

[LS91] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization.
SIAM Journal on Optimization, 1(2):166–190, 1991. 3, 18.3

[SA90] S. Sherali and W. Adams. A hierarchy of relaxations between the continuous and con-
vex hull representations for zero-one programming problems. SIAM Journal on Discrete
Mathematics, 3(3):411–430, 1990. 4, 18.4

5


	Outline
	Lift-and-project for mixed 0,1 programs
	The Lovász-Schrijver construction
	The Sherali-Adams construction

