1 Outline

In this lecture, we study

- split cuts,
- Gomory's mixed-integer cuts,
- relationships between Gomory's mixed-integer cuts, Gomory's fractional cuts, and split cuts.

2 Split cuts

Consider a mixed-integer program given as follows.

$$
\begin{aligned}
\min & c^{\top} x+h^{\top} y \\
\text { s.t. } & A x+G y \leq b \\
& x \in \mathbb{Z}^{d}, y \in \mathbb{R}^{p}
\end{aligned}
$$

where A, G, b have rational entries. Then

$$
P=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{p}: A x+G y \leq b\right\}
$$

is a rational polyhedron and the feasible set of the LP relaxation. Moreover,

$$
S=P \cap\left(\mathbb{Z}^{d} \times \mathbb{R}^{p}\right)
$$

is the set of solutions to the mixed-integer program.
Let $\pi \in \mathbb{Z}^{d}$ and $\pi_{0} \in \mathbb{Z}$. Note that for any $x \in \mathbb{Z}^{d}$, we know that $\pi^{\top} x$ is an integer. Therefore, any $x \in \mathbb{Z}^{d}$ satisfies $\pi^{\top} x \leq \pi_{0}$ or $\pi^{\top} x \geq \pi_{0}+1$. Note that $\mathbb{Z}^{d} \times \mathbb{R}^{p}$ can be partitioned as

$$
\mathbb{Z}^{d} \times \mathbb{R}^{p}=\left\{(x, y) \in \mathbb{Z}^{d} \times \mathbb{R}^{p}: \pi^{\top} x \leq \pi_{0}\right\} \cup\left\{(x, y) \in \mathbb{Z}^{d} \times \mathbb{R}^{p}: \pi^{\top} x \geq \pi_{0}+1\right\} .
$$

Similarly, it follows that

$$
S=\left\{(x, y) \in S: \pi^{\top} x \leq \pi_{0}\right\} \cup\left\{(x, y) \in S: \pi^{\top} x \geq \pi_{0}+1\right\} .
$$

Motivated by this, we define two polyhedron as follows.

$$
\begin{aligned}
& \Pi_{1}=\left\{(x, y) \in P: \pi^{\top} x \leq \pi_{0}\right\} \\
& \Pi_{2}=\left\{(x, y) \in P: \pi^{\top} x \geq \pi_{0}+1\right\} .
\end{aligned}
$$

Note that

$$
S \subseteq \Pi_{1} \cup \Pi_{2}
$$

Here, $\Pi_{1} \cup \Pi_{2}$ is a subset of P as shown in Figure 17.1, and therefore, $\Pi_{1} \cup \Pi_{2}$ is a stronger relaxation of S than P.

Figure 17.1: Splitting a polyhedron

We refer to an inequality $\alpha^{\top} x+\beta^{\top} y \leq \gamma$ that is valid for $\Pi_{1} \cup \Pi_{2}$ as a split cut for P. As shown in Figure 17.2, a split cut may cut off some part of the polyhedron P.

Figure 17.2: Split cut for polyhedron P

The set between two parallel hyperplanes, given by

$$
\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{p}: \pi_{0} \leq \pi^{\top} x \leq \pi_{0}+1\right\}
$$

is called a split set. We refer to $\Pi_{1} \cup \Pi_{2}$ obtained from the polyhedron P and $\left(\pi, \pi_{0}\right) \in \mathbb{Z}^{d} \times \mathbb{Z}$ as a split. Note that splits are defined with the integeer variables, not with continuous variables.

Figure 17.3: Applying all splits cuts for a split
If we apply all split cuts from the split with $\left(\pi, \pi_{0}\right)$, then we obtain $\operatorname{conv}\left(\Pi_{1} \cup \Pi_{2}\right)$ as in Figure 17.3.

Recall that an inequality $\pi^{\top} x \leq \pi_{0}$ is a Chvátal-Gomory cut if

$$
P \cap\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{p}: \pi^{\top} x \geq \pi_{0}+1\right\}=\emptyset
$$

In fact, a Chvátal-Gomory cut is a split cut when one of Π_{1} and Π_{2} is empty (see Figure 17.4).

Figure 17.4: Chvátal-Gomory cut as a split cut
We may take all possible split cuts from every possible $\left(\pi, \pi_{0}\right) \in \mathbb{Z}^{d} \times \mathbb{Z}$. The resulting set is called the split closure of the polyhedron P. The split closure of P is given by

$$
P^{(1)}=\bigcap_{\left(\pi, \pi_{0}\right) \in \mathbb{Z}^{d} \times \mathbb{Z}} \operatorname{conv}\left(\Pi_{1}^{\left(\pi, \pi_{0}\right)} \cup \Pi_{2}^{\left(\pi, \pi_{0}\right)}\right)
$$

where $\Pi_{1}^{\left(\pi, \pi_{0}\right)} \cup \Pi_{2}^{\left(\pi, \pi_{0}\right)}$ denotes the split associated with $\left(\pi, \pi_{0}\right) \in \mathbb{Z}^{d} \times \mathbb{Z}$.
Theorem 17.1 (Cook, Kannan, and Schrijver [CKS90]). The split closure of any rational polyhedron is a rational polyhedron.

Then the split closure $P^{(1)}$ is a rational polyhedron. Therefore, we may recursively apply the procedure of taking the split closure. Let $P^{(k)}$ denote the $k \mathbf{t h}$ split closure of P, that is, the split closure of $P^{(k-1)}$.

Example 17.2. Consider a polyhedron

$$
P=\left\{\left(x_{1}, x_{2}, y\right) \in \mathbb{R}_{+}^{3}: x_{1} \geq y, x_{2} \geq y, x_{1}+x_{2}+2 y \leq 2\right\}
$$

and the associated mixed-integer set

$$
S=P \cap\left(\mathbb{Z}^{2} \times \mathbb{R}\right)
$$

Note that P is a convex combination of 4 points as follows.

$$
P=\operatorname{conv}\left(\left\{(0,0,0),(2,0,0),(0,2,0),\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)\right\}\right) .
$$

Here, P has an apex $(1 / 2,1 / 2,1 / 2)$. Moreover,

$$
\begin{aligned}
S & =\{(0,0,0),(2,0,0),(0,2,0)\} \\
& =\left\{\left(x_{1}, x_{2}, y\right) \in \mathbb{R}_{+}^{3}: x_{1} \geq y, x_{2} \geq y, y \leq 0\right\} .
\end{aligned}
$$

Therefore, to obtain the convex hull of S, we need to deduce inequality $y \leq 0$. However, we can argue that the k th split closure of $P^{(k)}$ for any finite k contains a point of the form $(1 / 2,1 / 2, t)$ for some $t>0$.

Figure 17.5: P as the convex hull of some points

3 Gomory's mixed-integer cuts

We consider the following mixed-integer set

$$
S=\left\{(x, y) \in \mathbb{Z}_{+}^{d} \times \mathbb{R}_{+}^{p}: \sum_{i \in[d]} a_{i} x_{i}+\sum_{j \in[p]} g_{j} y_{j}=b\right\} \subseteq \mathbb{Z}_{+}^{d} \times \mathbb{R}_{+}^{p} .
$$

Let $f_{0}, f_{1}, \ldots, f_{d}$ be defined as

$$
f_{0}=b-\lfloor b\rfloor, \quad f_{i}=a_{i}-\left\lfloor a_{i}\right\rfloor \quad \text { for } i \in[d] .
$$

We assume that

$$
0<f_{0}<1
$$

i.e., b is not an integer, so that we may generate a nontrivial cut. Then

$$
\sum_{i \in[d]} a_{i} x_{i}+\sum_{j \in[p]} g_{j} y_{j}=b
$$

is equivalent to

$$
\sum_{i \in[d]} f_{i} x_{i}+\sum_{j \in[p]} g_{j} y_{j}=f_{0}+\left(\lfloor b\rfloor-\sum_{i \in[d]}\left\lfloor a_{i}\right\rfloor x_{i}\right) .
$$

This is further reduced to

$$
\sum_{i \in[d]: f_{i} \leq f_{0}} f_{i} x_{i}+\sum_{i \in[d]: f_{i}>f_{0}}\left(f_{i}-1\right) x_{i}+\sum_{j \in[p]} g_{j} y_{j}=f_{0}+\left(\lfloor b\rfloor-\sum_{i \in[d]: f_{i} \leq f_{0}}\left\lfloor a_{i}\right\rfloor x_{i}-\sum_{i \in[d]: f_{i}>f_{0}}\left(\left\lfloor a_{i}\right\rfloor+1\right) x_{i}\right) .
$$

Therefore, we deduce that

$$
S \subseteq\left\{(x, y) \in \mathbb{Z}_{+}^{d} \times \mathbb{R}_{+}^{p}: \sum_{i \in[d]: f_{i} \leq f_{0}} f_{i} x_{i}+\sum_{i \in[d]: f_{i}>f_{0}}\left(f_{i}-1\right) x_{i}+\sum_{j \in[p]} g_{j} y_{j}=f_{0}+k \quad \text { for some integer } k\right\} .
$$

The set on the right-hand side is contained in

$$
\begin{aligned}
& \left\{(x, y) \in \mathbb{Z}_{+}^{d} \times \mathbb{R}_{+}^{p}: \sum_{i \in[d]: f_{i} \leq f_{0}} f_{i} x_{i}+\sum_{i \in[d]]: f_{i}>f_{0}}\left(f_{i}-1\right) x_{i}+\sum_{j \in[p]} g_{j} y_{j} \geq f_{0}\right\} \\
& \bigcup\left\{(x, y) \in \mathbb{Z}_{+}^{d} \times \mathbb{R}_{+}^{p}: \sum_{i \in[d]: f_{i} \leq f_{0}} f_{i} x_{i}+\sum_{i \in[d]: f_{i}>f_{0}}\left(f_{i}-1\right) x_{i}+\sum_{j \in[p]} g_{j} y_{j} \leq f_{0}-1\right\},
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
& \left\{(x, y) \in \mathbb{Z}_{+}^{d} \times \mathbb{R}_{+}^{p}: \sum_{i \in[d]: f_{i} \leq f_{0}} \frac{f_{i}}{f_{0}} x_{i}+\sum_{i \in[d]: f_{i}>f_{0}} \frac{f_{i}-1}{f_{0}} x_{i}+\sum_{j \in[p]} \frac{g_{j}}{f_{0}} y_{j} \geq 1\right\} \\
& \bigcup\left\{(x, y) \in \mathbb{Z}_{+}^{d} \times \mathbb{R}_{+}^{p}: \sum_{i \in[d]: f_{i} \leq f_{0}} \frac{-f_{i}}{1-f_{0}} x_{i}+\sum_{i \in[d]: f_{i}>f_{0}} \frac{1-f_{i}}{1-f_{0}} x_{i}+\sum_{j \in[p]} \frac{-g_{j}}{1-f_{0}} y_{j} \geq 1\right\},
\end{aligned}
$$

Then
$\sum_{i \in[d]: f_{i} \leq f_{0}} \max \left\{\frac{f_{i}}{f_{0}}, \frac{-f_{i}}{1-f_{0}}\right\} x_{i}+\sum_{i \in[d]: f_{i}>f_{0}} \max \left\{\frac{f_{i}-1}{f_{0}}, \frac{1-f_{i}}{1-f_{0}}\right\} x_{i}+\sum_{j \in[p]} \max \left\{\frac{g_{j}}{f_{0}}, \frac{-g_{j}}{1-f_{0}}\right\} y_{j} \geq 1$
is a valid inequality for S. Since $0 \leq f_{i}<1$ for $i \in[p]$. Here, the inequality is equal to

$$
\sum_{i \in[d]: f_{i} \leq f_{0}} \frac{f_{i}}{f_{0}} x_{i}+\sum_{i \in[d]: f_{i}>f_{0}} \frac{1-f_{i}}{1-f_{0}} x_{i}+\sum_{j \in[p]: g_{j} \geq 0} \frac{g_{j}}{f_{0}} y_{j}+\sum_{j \in[p]: g_{j}<0} \frac{-g_{j}}{1-f_{0}} y_{j} \geq 1 .
$$

This inequality is a Gomory's mixed-integer (GMI) cut.

3.1 Comparison with Gomory's fractional cuts

Recall that we considered sets of the form

$$
S=\left\{x \in \mathbb{Z}_{+}^{d}: \sum_{i \in[d]} a_{i} x_{i}=b\right\}
$$

Recall that Gomory's fractional cut is given by

$$
\sum_{i \in[d]}\left(a_{i}-\left\lfloor a_{i}\right\rfloor\right) x_{i} \geq b-\lfloor b\rfloor .
$$

Then Gomory's fractional cut is equivalent to

$$
\sum_{i \in[d]} \frac{f_{i}}{f_{0}} x_{i} \geq 1
$$

where $f_{i}=a_{i}-\left\lfloor a_{i}\right\rfloor$ for $i \in[d]$ and $f_{0}=b-\lfloor b\rfloor$. On the other hand, Gomory's mixed-integer cut for the set S has the form

$$
\sum_{i \in[d]: f_{i} \leq f_{0}} \frac{f_{i}}{f_{0}} x_{i}+\sum_{i \in[d]: f_{i}>f_{0}} \frac{1-f_{i}}{1-f_{0}} x_{i} \geq 1
$$

In fact, if $f_{i}>f_{0}$, then

$$
\frac{f_{i}}{f_{0}}>\frac{1-f_{i}}{1-f_{0}} .
$$

This indicates that Gomory's mixed-integer cuts dominate Gomory's fractional cuts.

3.2 Connection to split cuts

Let us consider again the mixed-integer set given by

$$
S=\left\{(x, y) \in \mathbb{Z}_{+}^{d} \times \mathbb{R}_{+}^{p}: \sum_{i \in[d]} a_{i} x_{i}+\sum_{j \in[p]} g_{j} y_{j}=b\right\} \subseteq \mathbb{Z}_{+}^{d} \times \mathbb{R}_{+}^{p}
$$

Let $\left(\pi, \pi_{0}\right) \in \mathbb{Z}^{d} \times \mathbb{Z}$ be defined as follows.

$$
\pi_{i}=\left\{\begin{array}{ll}
\left\lfloor a_{i}\right\rfloor, & \text { if } f_{i} \leq f_{0} \\
\left\lfloor a_{i}\right\rfloor+1, & \text { if } f_{i}>f_{0}
\end{array}, \quad \pi_{0}=\lfloor b\rfloor .\right.
$$

Then $\left(\pi, \pi_{0}\right)$ defines split $\Pi_{1} \cup \Pi_{2}$ given by

$$
\begin{aligned}
& \Pi_{1}=\left\{(x, y) \in \mathbb{R}_{+}^{d} \times \mathbb{R}_{+}^{p}: \sum_{i \in[d]} a_{i} x_{i}+\sum_{j \in[p]} g_{j} y_{j}=b, \sum_{i \in[d]: f_{i} \leq f_{0}}\left\lfloor a_{i}\right\rfloor x_{i}+\sum_{i \in[d]: f_{i}>f_{0}}\left(\left\lfloor a_{i}\right\rfloor+1\right) x_{i} \leq\lfloor b\rfloor\right\} \\
& \Pi_{2}=\left\{(x, y) \in \mathbb{R}_{+}^{d} \times \mathbb{R}_{+}^{p}: \sum_{i \in[d]} a_{i} x_{i}+\sum_{j \in[p]} g_{j} y_{j}=b, \sum_{i \in[d]: f_{i} \leq f_{0}}\left\lfloor a_{i}\right\rfloor x_{i}+\sum_{i \in[d]: f_{i}>f_{0}}\left(\left\lfloor a_{i}\right\rfloor+1\right) x_{i} \geq\lfloor b\rfloor+1\right\}
\end{aligned}
$$

For Π_{1}, subtracting the inequality from the equality, we deduce that

$$
\sum_{i \in[d]: f_{i} \leq f_{0}} f_{i} x_{i}+\sum_{i \in[d]: f_{i}>f_{0}}\left(f_{i}-1\right) x_{i}+\sum_{j \in[p]} g_{j} y_{j} \geq f_{0}
$$

is valid for Π_{1}. For Π_{2}, subtracting the inequality from the equality, we deduce that

$$
\sum_{i \in[d]: f_{i} \leq f_{0}} f_{i} x_{i}+\sum_{i \in[d]: f_{i}>f_{0}}\left(f_{i}-1\right) x_{i}+\sum_{j \in[p]} g_{j} y_{j} \leq f_{0}-1
$$

is valid for Π_{2}. The inequalities are equivalent to

$$
\begin{aligned}
& \sum_{i \in[d]: f_{i} \leq f_{0}} \frac{f_{i}}{f_{0}} x_{i}+\sum_{i \in[d]: f_{i}>f_{0}} \frac{f_{i}-1}{f_{0}} x_{i}+\sum_{j \in[p]} \frac{g_{j}}{f_{0}} y_{j} \geq 1 \\
& \sum_{i \in[d]: f_{i} \leq f_{0}} \frac{-f_{i}}{1-f_{0}} x_{i}+\sum_{i \in[d]: f_{i}>f_{0}} \frac{1-f_{i}}{1-f_{0}} x_{i}+\sum_{j \in[p]} \frac{-g_{j}}{1-f_{0}} y_{j} \geq 1
\end{aligned}
$$

where the first inequality is valid for Π_{1} and the second inequality is valid for Π_{2}. Then we can argue that
$\sum_{i \in[d]: f_{i} \leq f_{0}} \max \left\{\frac{f_{i}}{f_{0}}, \frac{-f_{i}}{1-f_{0}}\right\} x_{i}+\sum_{i \in[d]: f_{i}>f_{0}} \max \left\{\frac{f_{i}-1}{f_{0}}, \frac{1-f_{i}}{1-f_{0}}\right\} x_{i}+\sum_{j \in[p]} \max \left\{\frac{g_{j}}{f_{0}}, \frac{-g_{j}}{1-f_{0}}\right\} y_{j} \geq 1$
is valid for $\Pi_{1} \cup \Pi_{2}$. In fact, the inequality is precisely Gomory's mixed-integer cut for the set S.

3.3 Gomory's mixed-integer closure

Let us consider a rational polyhedron given by

$$
P=\left\{(x, y) \in \mathbb{R}_{+}^{d} \times \mathbb{R}_{+}^{p}: A x+G y \leq b\right\} .
$$

By adding nonnegative slack variables s, we deduce that

$$
P=\left\{(x, y) \in \mathbb{R}_{+}^{d} \times \mathbb{R}_{+}^{p}: \exists s \in \mathbb{R}_{+}^{m} \text { s.t. } A x+G y+s=b\right\}
$$

where m is the number of inequalities in the system $A x+G y \leq b$. Then we may take any linear combination of the equality constraints in $A x+G y+s=b$ by taking a multiplier λ :

$$
\left(A^{\top} \lambda\right) x+\left(G^{\top} \lambda\right) y+\lambda^{\top} s=b^{\top} \lambda .
$$

Then we can generate Gomory's mixed-integer cut associated with this equation. Repeating this procedure for all every possible λ, we may apply all possible Gomory's mixed-integer cuts. We refer to the resulting set as the mixed integer closure of P.

Theorem 17.3. The mixed integer closure of P coincides with the split closure of P.

References

[CKS90] W.J. Cook, R. Kannan, and A. Schrijver. Chvátal closures for mixed integer programming problems. Mathematical Programming, 47:155-174, 1990. 17.1

