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1 Outline

In this lecture, we study

• split cuts,

• Gomory’s mixed-integer cuts,

• relationships between Gomory’s mixed-integer cuts, Gomory’s fractional cuts, and split cuts.

2 Split cuts

Consider a mixed-integer program given as follows.

min c⊤x+ h⊤y

s.t. Ax+Gy ≤ b

x ∈ Zd, y ∈ Rp

where A,G, b have rational entries. Then

P =
{
(x, y) ∈ Rd × Rp : Ax+Gy ≤ b

}
is a rational polyhedron and the feasible set of the LP relaxation. Moreover,

S = P ∩ (Zd × Rp)

is the set of solutions to the mixed-integer program.

Let π ∈ Zd and π0 ∈ Z. Note that for any x ∈ Zd, we know that π⊤x is an integer. Therefore, any
x ∈ Zd satisfies π⊤x ≤ π0 or π⊤x ≥ π0 + 1. Note that Zd × Rp can be partitioned as

Zd × Rp =
{
(x, y) ∈ Zd × Rp : π⊤x ≤ π0

}
∪
{
(x, y) ∈ Zd × Rp : π⊤x ≥ π0 + 1

}
.

Similarly, it follows that

S =
{
(x, y) ∈ S : π⊤x ≤ π0

}
∪
{
(x, y) ∈ S : π⊤x ≥ π0 + 1

}
.

Motivated by this, we define two polyhedron as follows.

Π1 =
{
(x, y) ∈ P : π⊤x ≤ π0

}
,

Π2 =
{
(x, y) ∈ P : π⊤x ≥ π0 + 1

}
.

Note that
S ⊆ Π1 ∪Π2.

Here, Π1∪Π2 is a subset of P as shown in Figure 17.1, and therefore, Π1∪Π2 is a stronger relaxation
of S than P .
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Figure 17.1: Splitting a polyhedron

We refer to an inequality α⊤x+ β⊤y ≤ γ that is valid for Π1 ∪Π2 as a split cut for P . As shown
in Figure 17.2, a split cut may cut off some part of the polyhedron P .

Figure 17.2: Split cut for polyhedron P

The set between two parallel hyperplanes, given by

{(x, y) ∈ Rd × Rp : π0 ≤ π⊤x ≤ π0 + 1}

is called a split set. We refer to Π1 ∪Π2 obtained from the polyhedron P and (π, π0) ∈ Zd ×Z as
a split. Note that splits are defined with the integeer variables, not with continuous variables.

Figure 17.3: Applying all splits cuts for a split

If we apply all split cuts from the split with (π, π0), then we obtain conv(Π1∪Π2) as in Figure 17.3.
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Recall that an inequality π⊤x ≤ π0 is a Chvátal-Gomory cut if

P ∩
{
(x, y) ∈ Rd × Rp : π⊤x ≥ π0 + 1

}
= ∅.

In fact, a Chvátal-Gomory cut is a split cut when one of Π1 and Π2 is empty (see Figure 17.4).

Figure 17.4: Chvátal-Gomory cut as a split cut

We may take all possible split cuts from every possible (π, π0) ∈ Zd ×Z. The resulting set is called
the split closure of the polyhedron P . The split closure of P is given by

P (1) =
⋂

(π,π0)∈Zd×Z

conv
(
Π

(π,π0)
1 ∪Π

(π,π0)
2

)
where Π

(π,π0)
1 ∪Π

(π,π0)
2 denotes the split associated with (π, π0) ∈ Zd × Z.

Theorem 17.1 (Cook, Kannan, and Schrijver [CKS90]). The split closure of any rational polyhe-
dron is a rational polyhedron.

Then the split closure P (1) is a rational polyhedron. Therefore, we may recursively apply the
procedure of taking the split closure. Let P (k) denote the kth split closure of P , that is, the split
closure of P (k−1).

Example 17.2. Consider a polyhedron

P =
{
(x1, x2, y) ∈ R3

+ : x1 ≥ y, x2 ≥ y, x1 + x2 + 2y ≤ 2
}

and the associated mixed-integer set

S = P ∩ (Z2 × R).

Note that P is a convex combination of 4 points as follows.

P = conv

({
(0, 0, 0), (2, 0, 0), (0, 2, 0),

(
1

2
,
1

2
,
1

2

)})
.

Here, P has an apex (1/2, 1/2, 1/2). Moreover,

S = {(0, 0, 0), (2, 0, 0), (0, 2, 0)}
=

{
(x1, x2, y) ∈ R3

+ : x1 ≥ y, x2 ≥ y, y ≤ 0
}
.

Therefore, to obtain the convex hull of S, we need to deduce inequality y ≤ 0. However, we can
argue that the kth split closure of P (k) for any finite k contains a point of the form (1/2, 1/2, t) for
some t > 0.
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Figure 17.5: P as the convex hull of some points

3 Gomory’s mixed-integer cuts

We consider the following mixed-integer set

S =

(x, y) ∈ Zd
+ × Rp

+ :
∑
i∈[d]

aixi +
∑
j∈[p]

gjyj = b

 ⊆ Zd
+ × Rp

+.

Let f0, f1, . . . , fd be defined as

f0 = b− ⌊b⌋, fi = ai − ⌊ai⌋ for i ∈ [d].

We assume that
0 < f0 < 1,

i.e., b is not an integer, so that we may generate a nontrivial cut. Then∑
i∈[d]

aixi +
∑
j∈[p]

gjyj = b

is equivalent to ∑
i∈[d]

fixi +
∑
j∈[p]

gjyj = f0 +

⌊b⌋ −
∑
i∈[d]

⌊ai⌋xi

 .

This is further reduced to

∑
i∈[d]:fi≤f0

fixi+
∑

i∈[d]:fi>f0

(fi−1)xi+
∑
j∈[p]

gjyj = f0+

⌊b⌋ −
∑

i∈[d]:fi≤f0

⌊ai⌋xi −
∑

i∈[d]:fi>f0

(⌊ai⌋+ 1)xi

 .

Therefore, we deduce that

S ⊆

(x, y) ∈ Zd
+ × Rp

+ :
∑

i∈[d]:fi≤f0

fixi +
∑

i∈[d]:fi>f0

(fi − 1)xi +
∑
j∈[p]

gjyj = f0 + k for some integer k

 .

The set on the right-hand side is contained in(x, y) ∈ Zd
+ × Rp

+ :
∑

i∈[d]:fi≤f0

fixi +
∑

i∈[d]:fi>f0

(fi − 1)xi +
∑
j∈[p]

gjyj ≥ f0


⋃(x, y) ∈ Zd

+ × Rp
+ :

∑
i∈[d]:fi≤f0

fixi +
∑

i∈[d]:fi>f0

(fi − 1)xi +
∑
j∈[p]

gjyj ≤ f0 − 1

 ,
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which is equivalent to(x, y) ∈ Zd
+ × Rp

+ :
∑

i∈[d]:fi≤f0

fi
f0

xi +
∑

i∈[d]:fi>f0

fi − 1

f0
xi +

∑
j∈[p]

gj
f0

yj ≥ 1


⋃(x, y) ∈ Zd

+ × Rp
+ :

∑
i∈[d]:fi≤f0

−fi
1− f0

xi +
∑

i∈[d]:fi>f0

1− fi
1− f0

xi +
∑
j∈[p]

−gj
1− f0

yj ≥ 1

 ,

Then∑
i∈[d]:fi≤f0

max

{
fi
f0

,
−fi

1− f0

}
xi +

∑
i∈[d]:fi>f0

max

{
fi − 1

f0
,
1− fi
1− f0

}
xi +

∑
j∈[p]

max

{
gj
f0

,
−gj
1− f0

}
yj ≥ 1

is a valid inequality for S. Since 0 ≤ fi < 1 for i ∈ [p]. Here, the inequality is equal to∑
i∈[d]:fi≤f0

fi
f0

xi +
∑

i∈[d]:fi>f0

1− fi
1− f0

xi +
∑

j∈[p]:gj≥0

gj
f0

yj +
∑

j∈[p]:gj<0

−gj
1− f0

yj ≥ 1.

This inequality is a Gomory’s mixed-integer (GMI) cut.

3.1 Comparison with Gomory’s fractional cuts

Recall that we considered sets of the form

S =

x ∈ Zd
+ :

∑
i∈[d]

aixi = b

 .

Recall that Gomory’s fractional cut is given by∑
i∈[d]

(ai − ⌊ai⌋)xi ≥ b− ⌊b⌋.

Then Gomory’s fractional cut is equivalent to∑
i∈[d]

fi
f0

xi ≥ 1

where fi = ai − ⌊ai⌋ for i ∈ [d] and f0 = b− ⌊b⌋. On the other hand, Gomory’s mixed-integer cut
for the set S has the form ∑

i∈[d]:fi≤f0

fi
f0

xi +
∑

i∈[d]:fi>f0

1− fi
1− f0

xi ≥ 1.

In fact, if fi > f0, then
fi
f0

>
1− fi
1− f0

.

This indicates that Gomory’s mixed-integer cuts dominate Gomory’s fractional cuts.
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3.2 Connection to split cuts

Let us consider again the mixed-integer set given by

S =

(x, y) ∈ Zd
+ × Rp

+ :
∑
i∈[d]

aixi +
∑
j∈[p]

gjyj = b

 ⊆ Zd
+ × Rp

+.

Let (π, π0) ∈ Zd × Z be defined as follows.

πi =

{
⌊ai⌋, if fi ≤ f0

⌊ai⌋+ 1, if fi > f0
, π0 = ⌊b⌋.

Then (π, π0) defines split Π1 ∪Π2 given by

Π1 =

(x, y) ∈ Rd
+ × Rp

+ :
∑
i∈[d]

aixi +
∑
j∈[p]

gjyj = b,
∑

i∈[d]:fi≤f0

⌊ai⌋xi +
∑

i∈[d]:fi>f0

(⌊ai⌋+ 1)xi ≤ ⌊b⌋

 ,

Π2 =

(x, y) ∈ Rd
+ × Rp

+ :
∑
i∈[d]

aixi +
∑
j∈[p]

gjyj = b,
∑

i∈[d]:fi≤f0

⌊ai⌋xi +
∑

i∈[d]:fi>f0

(⌊ai⌋+ 1)xi ≥ ⌊b⌋+ 1


For Π1, subtracting the inequality from the equality, we deduce that∑

i∈[d]:fi≤f0

fixi +
∑

i∈[d]:fi>f0

(fi − 1)xi +
∑
j∈[p]

gjyj ≥ f0

is valid for Π1. For Π2, subtracting the inequality from the equality, we deduce that∑
i∈[d]:fi≤f0

fixi +
∑

i∈[d]:fi>f0

(fi − 1)xi +
∑
j∈[p]

gjyj ≤ f0 − 1

is valid for Π2. The inequalities are equivalent to∑
i∈[d]:fi≤f0

fi
f0

xi +
∑

i∈[d]:fi>f0

fi − 1

f0
xi +

∑
j∈[p]

gj
f0

yj ≥ 1

∑
i∈[d]:fi≤f0

−fi
1− f0

xi +
∑

i∈[d]:fi>f0

1− fi
1− f0

xi +
∑
j∈[p]

−gj
1− f0

yj ≥ 1

where the first inequality is valid for Π1 and the second inequality is valid for Π2. Then we can
argue that∑
i∈[d]:fi≤f0

max

{
fi
f0

,
−fi

1− f0

}
xi +

∑
i∈[d]:fi>f0

max

{
fi − 1

f0
,
1− fi
1− f0

}
xi +

∑
j∈[p]

max

{
gj
f0

,
−gj
1− f0

}
yj ≥ 1

is valid for Π1 ∪Π2. In fact, the inequality is precisely Gomory’s mixed-integer cut for the set S.
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3.3 Gomory’s mixed-integer closure

Let us consider a rational polyhedron given by

P =
{
(x, y) ∈ Rd

+ × Rp
+ : Ax+Gy ≤ b

}
.

By adding nonnegative slack variables s, we deduce that

P =
{
(x, y) ∈ Rd

+ × Rp
+ : ∃s ∈ Rm

+ s.t. Ax+Gy + s = b
}

where m is the number of inequalities in the system Ax + Gy ≤ b. Then we may take any linear
combination of the equality constraints in Ax+Gy + s = b by taking a multiplier λ:

(A⊤λ)x+ (G⊤λ)y + λ⊤s = b⊤λ.

Then we can generate Gomory’s mixed-integer cut associated with this equation. Repeating this
procedure for all every possible λ, we may apply all possible Gomory’s mixed-integer cuts. We refer
to the resulting set as the mixed integer closure of P .

Theorem 17.3. The mixed integer closure of P coincides with the split closure of P .
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