1 Outline

In this lecture, we study

- Chvátal closure,
- Gomory's fractional cuts,

2 Chvátal-Gomory cuts

2.1 Geometric view

Let $P=\left\{x \in \mathbb{R}^{d}: A x \leq b\right\}$ be a polyhedron and $S=P \cap \mathbb{Z}^{d}$ be the set of integer solutions in P. Let $c \in \mathbb{Z}^{d}$. Then

$$
c^{\top} x \leq \max \left\{c^{\top} y: y \in P\right\}
$$

is valid for P. Let $d \in \mathbb{Z}$ be defined as

$$
d=\left\lfloor\max \left\{c^{\top} y: y \in P\right\}\right\rfloor .
$$

Then it follows that

$$
P \cap\left\{x \in \mathbb{R}^{d}: c^{\top} x \geq d+1\right\}=\emptyset
$$

Moreover, $c^{\top} x \leq d$ is valid for $\operatorname{conv}(S)$.

Figure 16.1: Geometric view of Chvátal-Gomory cuts

Proposition 16.1. $c^{\top} x \leq d$ is a Chvátal-Gomory cut, and every Chvátal-Gomory cut can be obtained this way.

Proof. Let $\beta=\max \left\{c^{\top} x: x \in P\right\}$. Then $\beta<d+1$. Moreover, $c^{\top} x \leq \beta$ is valid for P. Then by Strong duality, there exists $\lambda \in \mathbb{R}_{+}^{m}$ such that $A^{\top} \lambda=c$ and $b^{\top} \lambda=\beta$. Therefore, the corresponding Chvátal-Gomory cut $\left(A^{\top} \lambda\right)^{\top} x \leq\left\lfloor b^{\top} \lambda\right\rfloor$ is equivalent to $c^{\top} x \leq\lfloor\beta\rfloor$.

Conversely, let $\left(A^{\top} \lambda\right)^{\top} x \leq\left\lfloor b^{\top} \lambda\right\rfloor$ be a Chvátal-Gomory cut. By construction, $\left(A^{\top} \lambda\right)^{\top} x \leq b^{\top} \lambda$ is valid for P, and thus

$$
P \cap\left\{x \in \mathbb{R}^{d}:\left(A^{\top} \lambda\right)^{\top} x \geq\left\lfloor b^{\top} \lambda\right\rfloor+1\right\}=\emptyset,
$$

as required.

2.2 Chvátal closure

Let $P^{(1)}$ be the set obtained as the intersection of $P=\left\{x \in \mathbb{R}^{d}: A x \leq b\right\}$ with all Chvátal-Gomory cuts, i.e.,

$$
P^{(1)}=\bigcap_{\lambda \in \mathbb{R}_{+}^{m}: A^{\top} \lambda \in \mathbb{Z}^{d}}\left\{x \in \mathbb{R}^{d}:\left(A^{\top} \lambda\right)^{\top} x \leq\left\lfloor b^{\top} \lambda\right\rfloor\right\} .
$$

Here, this set $P^{(1)}$ is the Chvátal closure of P. As there exist infinitely many Chvátal-Gomory cuts, the Chvátal closure is defined by infinitely many linear inequalities. In fact, we will show that the Chvátal closure is a polyhedron, which means that it is defined by finitely many linear inequalities. In other words, all but a finite set of Chvátal-Gomory cuts are redundant.
Theorem 16.2. Let $P=\left\{x \in \mathbb{R}^{d}: A x \leq b\right\}$ be a rational polyhedron. Then a Chvátal-Gomory cut is implied by an inequality of the form $\left(A^{\top} \mu\right)^{\top} x \leq\left\lfloor b^{\top} \mu\right\rfloor$ where $A^{\top} \mu \in \mathbb{Z}^{d}$ and $0 \leq \mu<1$ and inequalities defining P.
Proof. As P is a rational polyhedron, we may assume that A and b have integer entries. Consider a Chvátal-Gomory cut $\left(A^{\top} \lambda\right)^{\top} x \leq\left\lfloor b^{\top} \lambda\right\rfloor$ with $\lambda \geq 0$. Now take

$$
\mu=\lambda-\lfloor\lambda\rfloor .
$$

Then $0 \leq \mu<1$. Moreover,

$$
A^{\top} \mu=A^{\top} \lambda-A^{\top}\lfloor\lambda\rfloor \in \mathbb{Z}^{d}
$$

because $A^{\top} \lambda \in \mathbb{Z}^{d}$ and $A,\lfloor\lambda\rfloor$ have integer entries. Therefore, $\left(A^{\top} \mu\right)^{\top} x \leq\left\lfloor b^{\top} \mu\right\rfloor$ is a ChvátalGomory cut, and $\left(A^{\top}\lfloor\lambda\rfloor\right)^{\top} x \leq b^{\top}\lfloor\lambda\rfloor$ is valid for P. Adding these two inequalities, we obtain

$$
\left(A^{\top} \mu+A^{\top}\lfloor\lambda\rfloor\right)^{\top} x \leq\left\lfloor b^{\top} \mu\right\rfloor+b^{\top}\lfloor\lambda\rfloor .
$$

Since A and b have integer entries,

$$
\begin{aligned}
A^{\top} \mu+A^{\top}\lfloor\lambda\rfloor & =A^{\top} \lambda \\
\left\lfloor b^{\top} \mu\right\rfloor+b^{\top}\lfloor\lambda\rfloor & =\left\lfloor b^{\top} \mu+b^{\top}\lfloor\lambda\rfloor\right\rfloor=\left\lfloor b^{\top} \lambda\right\rfloor .
\end{aligned}
$$

Then the inequality is equivalent to

$$
\left(A^{\top} \lambda\right)^{\top} x \leq\left\lfloor b^{\top} \lambda\right\rfloor .
$$

Therefore, the Chvátal-Gomory cut with multiplier λ is implied by the cut with multiplier μ and valid inequalities $A x \leq b$ for P.

With Theorem 16.2, we can now prove that the Chvátal closure is a polyhedron.
Theorem 16.3 (Schrijver [Sch80]). The Chvátal closure $P^{(1)}$ is a polyhedron.
Proof. By Theorem 16.2, we only need to consider $\left(A^{\top} \mu\right)^{\top} x \leq\left\lfloor b^{\top} \mu\right\rfloor$ where $A^{\top} \mu \in \mathbb{Z}^{d}$ and $0 \leq$ $\mu<1$. Here, the set

$$
\left\{\mu \in \mathbb{R}^{m}: A^{\top} \mu \in \mathbb{Z}^{d}, 0 \leq \mu<1\right\}
$$

is finite. Therefore, the Chvátal closure is obtained by applying a finite set of Chvátal-Gomory cuts.

2.3 Modular arithmetic and Gomory's fractional cuts

Assume that

$$
S=\left\{x \in \mathbb{Z}_{+}^{d}: \sum_{j=1}^{d} a_{j} x_{j}=a_{0}\right\}
$$

Let p be a positive integer, and assume that

$$
a_{j}=r_{j}+q_{j} p, \quad j=0,1, \ldots, d
$$

where $0 \leq r_{j}<p$ and $q_{j} \in \mathbb{Z}$. Then $\sum_{j=1}^{d} a_{j} x_{j}=a_{0}$ can be rewritten as

$$
\begin{aligned}
\sum_{j=1}^{d} r_{j} x_{j} & =r_{0}+\left(q_{0} p-\sum_{j=1}^{d} q_{j} p\right) \\
& =r_{0}+\left(q_{0}-\sum_{j=1}^{d} q_{j}\right) p
\end{aligned}
$$

Then it follows that

$$
S \subseteq\left\{x \in \mathbb{Z}_{+}^{d}: \sum_{j=1}^{d} r_{j} x_{j}=r_{0}+k p \text { where } k \in \mathbb{Z}\right\}
$$

Since r_{1}, \ldots, r_{d} are all nonnegative and $x \geq 0$,

$$
\sum_{j=1}^{d} r_{j} x_{j} \geq 0
$$

We know that if $x \in S$, then the left-hand side has a value of the form $r_{0}+k p$. What is the smallest nonnegative value that $r_{0}+k p$ can take? It is attained when $k=0$, in which case the value is r_{0}. Therefore, it follows that

$$
\sum_{j=1}^{d} r_{j} x_{j} \geq r_{0}
$$

is valid for S. Remember that p is an arbitary positive integer. In particular, we may choose $p=1$. Then the corresponding inequality is

$$
\sum_{j=1}^{d}\left(a_{j}-\left\lfloor a_{j}\right\rfloor\right) x_{j} \geq a_{0}-\left\lfloor a_{0}\right\rfloor
$$

This is a Gomory's fractional cut.

Remark 16.4. To generate a Gomory's fractional cut for $S=\left\{x \in \mathbb{Z}_{+}^{d}: A x \leq b\right\}$, we first add slack variables to make constraints equalities. More precisely, we add nonnegative variables s to have

$$
A x+s=b
$$

Then any equation

$$
\left(A^{\top} \lambda\right)^{\top} x+\lambda^{\top} s=b^{\top} \lambda
$$

can be used to produce a fractional cut.

Example 16.5. Consider the following system of constraints.

$$
\begin{aligned}
-x_{1}+2 x_{2} & \leq 4 \\
5 x_{1}+x_{2} & \leq 20 \\
-2 x_{1}-2 x_{2} & \leq-7 \\
x_{1}, x_{2} & \in \mathbb{Z}_{+}
\end{aligned}
$$

By adding slack variables, we obtain

$$
\begin{aligned}
-x_{1}+2 x_{2}+s_{1} & =4 \\
5 x_{1}+x_{2}+s_{2} & =20 \\
-2 x_{1}-2 x_{2}+s_{3} & =-7 \\
x_{1}, x_{2} & \in \mathbb{Z}_{+} \\
s_{1}, s_{2}, s_{3} & \geq 0
\end{aligned}
$$

Let us multiply $\lambda=(-1 / 11,2 / 11,0)$ to the equality constraints. Then we deduce that

$$
x_{1}-\frac{1}{11} s_{1}+\frac{2}{11} s_{2}=\frac{36}{11} .
$$

Then the corresponding Gomory's fractional cut is given by

$$
\frac{10}{11} s_{1}+\frac{2}{11} s_{2} \geq \frac{3}{11}
$$

In the original space, this is equivalent to

$$
\frac{10}{11}\left(4+x_{1}-2 x_{2}\right)+\frac{2}{11}\left(20-5 x_{1}-x_{2}\right) \geq \frac{3}{11}
$$

This inequality gives us

$$
x_{2} \leq \frac{7}{2} .
$$

Let $P=\left\{x \in \mathbb{R}_{+}^{d}: A x \leq b\right\}$ be a polyhedron where A and b have integer entries. Let the Gomory fractional closure of P is defined as the set obtained from P after applying all Gomory's fractional cuts.

Theorem 16.6. The Chvátal closure of P is identical to the Gomory fractional closure of P.
Proof. We first show that the Chvátal closure of P is contained in the Gomory fractional closure of P. To do so, it suffices to argue that a Gomory's fractional cut is implied by a Chvátal-Gomory cut. Adding slack variables s, we deduce

$$
A x+s=\left[\begin{array}{ll}
A & I
\end{array}\right]\left[\begin{array}{l}
x \\
s
\end{array}\right]=b .
$$

Then a Gomory's fractional cut is obtained from

$$
\lambda^{\top}\left[\begin{array}{ll}
A & I
\end{array}\right]\left[\begin{array}{l}
x \\
s
\end{array}\right]=b^{\top} \lambda
$$

for some $\lambda \geq 0$. Here the equation can be rewritten as

$$
\left(A^{\top} \lambda\right)^{\top} x+\lambda^{\top} s=b^{\top} \lambda
$$

Then Gomory's fractional cut is given by

$$
\left(A^{\top} \lambda-\left\lfloor A^{\top} \lambda\right\rfloor\right)^{\top} x+(\lambda-\lfloor\lambda\rfloor)^{\top} s \geq b^{\top} \lambda-\left\lfloor b^{\top} \lambda\right\rfloor .
$$

We will show that this is implied by a Chvátal-Gomory cut. Let μ be defined as

$$
\mu=\lambda-\lfloor\lambda\rfloor .
$$

As $\mu \geq 0$, it follows that

$$
\begin{equation*}
\left(A^{\top} \mu\right)^{\top} x+\mu^{\top} s \geq \mu^{\top} b \tag{16.1}
\end{equation*}
$$

is valid for P. Moreover, we know that

$$
\begin{equation*}
\left\lfloor A^{\top} \mu\right\rfloor^{\top} x \leq\left\lfloor b^{\top} \mu\right\rfloor \tag{16.2}
\end{equation*}
$$

is the Chvátal-Gomory cut associated with μ. Subtracting (16.2) from (16.1), we obtain

$$
\begin{equation*}
\left(A^{\top} \mu-\left\lfloor A^{\top} \mu\right\rfloor\right)^{\top} x+\mu^{\top} s \geq b^{\top} \mu-\left\lfloor b^{\top} \mu\right\rfloor . \tag{16.3}
\end{equation*}
$$

Note that

$$
\begin{aligned}
A^{\top} \mu-\left\lfloor A^{\top} \mu\right\rfloor & =A^{\top} \lambda-A^{\top}\lfloor\lambda\rfloor-\left\lfloor A^{\top} \lambda-A^{\top}\lfloor\lambda\rfloor\right\rfloor \\
& =A^{\top} \lambda-A^{\top}\lfloor\lambda\rfloor-\left\lfloor A^{\top} \lambda\right\rfloor+A^{\top}\lfloor\lambda\rfloor \\
& =A^{\top} \lambda-\left\lfloor A^{\top} \lambda\right\rfloor
\end{aligned}
$$

where the second equality holds because A has integer entries. Moreover,

$$
\begin{aligned}
b^{\top} \mu-\left\lfloor b^{\top} \mu\right\rfloor & =b^{\top} \lambda-b^{\top}\lfloor\lambda\rfloor-\left\lfloor b^{\top} \lambda-b^{\top}\lfloor\lambda\rfloor\right\rfloor \\
& =b^{\top} \lambda-b^{\top}\lfloor\lambda\rfloor-\left\lfloor b^{\top} \lambda\right\rfloor+b^{\top}\lfloor\lambda\rfloor \\
& =b^{\top} \lambda-\left\lfloor b^{\top} \lambda\right\rfloor
\end{aligned}
$$

where the second equality holds because b has integer entries. Therefore, (16.3) is equivalent to the Gomory's fractional cut associated with λ.
Conversely, we next prove that the Gomory fractional closure of P is contained in the Chvátal closure of P. We will argue that a Chvátal-Gomory cut is implied by a Gomory's fractional cut. By Theorem 16.2, we may focus on a Chvátal-Gomory cut of the form

$$
\left\lfloor A^{\top} \mu\right\rfloor^{\top} x \leq\left\lfloor b^{\top} \mu\right\rfloor
$$

where $0 \leq \mu<1$. Since $0 \leq \mu<1$, the corresponding Gomory's fractional cut is given by

$$
\left(A^{\top} \mu-\left\lfloor A^{\top} \mu\right\rfloor\right)^{\top} x+\mu^{\top} s \geq b^{\top} \mu-\left\lfloor b^{\top} \mu\right\rfloor .
$$

We subtract the Gomory's fractional cut from

$$
\left(A^{\top} \mu\right)^{\top} x+\mu^{\top} s=b^{\top} \mu
$$

Then we deduce that

$$
\left\lfloor A^{\top} \mu\right\rfloor^{\top} x \leq\left\lfloor b^{\top} \mu\right\rfloor,
$$

which is precisely the Chvátal-Gomory cut.

References

[Sch80] A. Schrijver. On cutting planes. Annals of Discrete Mathematics, 9:291-296, 1980. 16.3

