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1 Outline

In this lecture, we study

• Chvátal-Gomory cuts,

• odd-set inequalities for matching,

• Chvátal’s rounding procedure.

2 Chvátal-Gomory cuts

Starting with this lecture, we discuss general-purpose cutting planes for integer programming
in-depth. What is a general-purpose cutting plane? Given a polyhedron P = {x ∈ Rd

+ : Ax ≤ b}
and the set of integer solutions S = P ∩ Zd, we want to find an inequality c⊤x ≤ d such that

• c⊤x ≤ d is valid for S, i.e., every point z ∈ S satisfies c⊤z ≤ d,

• c⊤x ≤ d may be violated by some point in P .

Here, a general-purpose cutting plane is a prodcedure of generating such inequalities no matter
which values of A and b are given. The first is the so-called Chvátal-Gomory cuts.

Ralph Gomory [Gom58] discovered the first finitely convergent cutting plane algorithm for solving
pure integer linear programs. The cuts used within his algorithms are called Gomory’s fractional
cuts. In fact, the terminology refers to a “procedure” of generating valid inequalities/cuts for a
given (pure) integer program. That said, one may generate and apply Gomory’s fractional cuts for
any pure integer linear programs. For this reason, Gomory’s fractional cuts are general-purpose
cutting planes.

Vašek Chvátal [Chv73] later studied a cut-generation scheme that unifies some of the existing
valid inequalities for combinatorial optimization problems such as the matching problem and the
stable set problem. Although the initial focus was on combinatorial optimization problems, the
cut-generation scheme can be applied to any pure integer linear programs. In the paper, Chvátal
proved that the cuts obtained from his cut-generation scheme are essentially equivalent to Gomory’s
fractional cuts. For this reason, the generated cuts are now called Chvátal-Gomory cuts.

Chvátal-Gomory cuts are prevalent in the discrete optimization literature. Many fundamental
classes of facet-defining inequalities for combinatorial optimization problems are Chvátal-Gomory
cuts, e.g., odd set inequalities for the matching problem and odd circuit inequalities for the stable
set problem. Chvátal-Gomory cuts are computationally effective for solving integer linear programs
in practice [FL07, BCD+08], and Chvátal-Gomory cuts for nonlinear integer programs have also
been studied [ÇI05].

Then, what are Chvátal-Gomory cuts? How do we obtain them? Today, we will see combinatorial,
rounding, arithmetic, and geometric arguments to obtain Chvátal-Gomory cuts.
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2.1 Combinatorial argument

Consider the matching problem. Let G = (V,E) be an undirected graph, and the integer program-
ming formulation for the matching problem is given as follows.

max
∑
e∈E

wexe

s.t.
∑

e∈δ(v)

xe ≤ 1, v ∈ V

xe ∈ {0, 1}, e ∈ E

where

• we is the weight of edge e ∈ E,

• δ(v) = {e ∈ E : v is adjacent to e}.

Here, we want to generate valid inequalities for

S =

x ∈ {0, 1}E :
∑

e∈δ(v)

xe ≤ 1, v ∈ V

 .

Let U ⊆ V be a subset of the vertex set with an odd number of vertices. Then look at the set of

Figure 15.1: Odd cardinality subset

edges that are fully contained in U . Then the following inequality is satisfied by S.∑
e∈E(U)

xe ≤
|U | − 1

2

where E(U) is the set of edges fully contained in U . We call this inequality an odd-set inequality.
Why is the odd-set inequality valid? Note that the left-hand side

∑
e∈E(U) xe counts the maximum

number of edges from E(U) a maching can take. Here, a matching takes an edge in E(U) means
that two vertices in U are matched. Note that |U | is odd, and by parity, at least one vertex always
remains unmatched. Equivalently, at most |U | − 1 vertices in U can be matched by a matching.
Hence, E(U) contains at most (|U | − 1)/2 edges in a matching.

Chvátal [Chv73] developed the following systematic argument to derive odd-set inequalities. First,
take the inequalities

∑
e∈δ(v) xe ≤ 1 for all vertices v ∈ U , and sum them up:∑

v∈U

∑
e∈δ(v)

xe ≤ |U |.
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Here, in the left-hand side, xe appears twice if e is fully contained in u, and xe appears once if only
one of e’s two ends is contained in U . In other words, xe appears twice if e ∈ E(U), and xe appears
once if e ∈ δ(U) where

δ(U) = {e ∈ E : one end of e is in U while the other end of e is not in U}.

This implies that the inequality is equivalent to

2
∑

e∈E(U)

xe +
∑

e∈δ(U)

xe ≤ |U |.

Now let us divide each side by 2. ∑
e∈E(U)

xe +
1

2

∑
e∈δ(U)

xe ≤
|U |
2

.

Here, as xe ≥ 0 for all e ≥ E, the inequality implies that∑
e∈E(U)

xe + ⌊1
2
⌋

∑
e∈δ(U)

xe =
∑

e∈E(U)

xe ≤
|U |
2

.

Finally, we know that the left-hand side is an integer, so rounding down the right-hand side still
preserves validity. ∑

e∈E(U)

xe ≤ ⌊|U |
2

⌋ = |U | − 1

2
.

As a result, we deduce the odd-set inequality for subset U .

In fact, the odd set inequalities describe the matching polytope.

Theorem 15.1 (Edmonds [Edm65]). For the matching problem,

conv(S) =

x ∈ RE
+ :

∑
e∈δ(v)

xe ≤ 1, ∀v ∈ V,
∑

e∈E(U)

xe ≤
|U | − 1

2
, ∀U ⊆ V odd

 .

Here, conv(S) is called the matching polytope.

2.2 Chvátal’s integer rounding procedure

Given v = (v1, . . . , vd) ∈ Rd, let ⌊v⌋ denote the vector (⌊v1⌋, . . . , ⌊vd⌋) obtained after rounding
down each component of v. Let P = {x ∈ Rd

+ : Ax ≤ b} and S = P ∩Zd. Here, Chvátal’s rounding
procedure is as follows.

1. Take λ ∈ Rm
+ and λ⊤Ax ≤ λ⊤b valid for P .

2. Round down the left-hand side to obtain ⌊A⊤λ⌋⊤x ≤ b⊤λ. This inequality is valid because
λ⊤Ax ≤ λ⊤b and x ≥ 0.

3. Round down the right-hand side to obtain ⌊A⊤λ⌋⊤x ≤ ⌊b⊤λ⌋. This inequality is valid because
x ∈ Zd and ⌊A⊤λ⌋ ∈ Zd.
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In general, we consider polyhedron P = {x ∈ Rd : Ax ≤ b} that is not necessarily contained in Rd
+

and S = P ∩ Zd. For general polyhedra, Chvátal’s rounding procedure works as follows.

1. Take λ ∈ Rm
+ such that A⊤λ ∈ Zd. Then (A⊤λ)⊤x ≤ b⊤λ is valid for P .

2. Round down the right-hand side to obtain (A⊤λ)⊤x ≤ ⌊b⊤λ⌋. This inequality is valid because
x ∈ Zd and A⊤λ ∈ Zd.

In fact, the rounding procedure for the nonnegative case, i.e., P ⊆ Rd
+, is a special case. When P

is given by P = {x ∈ Rd
+ : Ax ≤ b}, the constraint system is given by

Ax ≤ b, −x ≤ 0.

Recall that we took a multiplier vector λ to obtain the corresponding Chvátal-Gomory cut

⌊A⊤λ⌋⊤x ≤ b⊤λ.

Note that this inequality is equivalent to

λ⊤Ax+ (A⊤λ− ⌊A⊤λ⌋)⊤(−x) ≤ b⊤λ.

This is equivalent to take multipliers (λ,A⊤λ− ⌊A⊤λ⌋) for system Ax ≤ b,−x ≤ 0.

An inequality that can be obtained from Chvátal’s rounding procedure is a Chvátal-Gomory cut.
Note that the multiplier vector λ can be arbitrary. In particular, there are infinitely many choices
for λ, thereby leading to infinitely many Chvátal-Gomory inequalities.
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