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1 Outline

In this lecture, we study

• bipartite matching,

• uncapacitated lot-sizing problem

2 Bipartite matching

A bipartite graph is a graph G = (V,E) where

• the vertex set V is partitioned into two sets V1 and V2,

• each edge e ∈ E crosses the partition, i.e. e has one end in V1 and the other end in V2.

For example, Figure 14.1 shows a bipartite graph on 7 vertices where one set contains 3 and the
other has 4. A matching is a set of edges without common vertices. In Figure 14.1, the set of

Figure 14.1: Bipartite graph and a matching

green edges gives rise to a matching.

Suppose that each edge e ∈ E has a weight we. Given a set of edges F , the weight of F is defined
as the sum of weights of the edges in F , given by,∑

e∈F
we.

The matching problem is to find a matching that has the maximum weight.
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2.1 Reduction to maximum st-flow for the unweighted case

We first consider the unweighted case, i.e., we = 1 for e ∈ E. The approach for the unweighted
case is to reduce bipartite matching to maximum st-flow. Given a bipartite graph G = (V,E) with
V partitioned into V1 and V2, we run the following transformation procedure.

• Add a source node s and a sink node t.

• Add arcs from s to all vertices in V1: {(s, u) : u ∈ V1}.

• Add arcs to t from all vertices in V2: {(v, t) : v ∈ V2}.

• Direct every edge (u, v) where u ∈ V1 and v ∈ V2 so that (u, v) becomes an arc from u to v.

• Set the flow upper bound cuv of every arc (u, v) to 1.

Figure 14.2: Reducing a bipartite graph to a flow newtwork

Then the following linear program computes a maximum st-flow over the above network.

max
∑
u∈V1

xsu

s.t.
∑

v∈V2:(u,v)∈E

xuv − xsu = 0, u ∈ V1

xvt −
∑

u∈V1:(u,v)∈E

xuv = 0, v ∈ V2

0 ≤ xsu, xvt, xuv ≤ 1, (u, v) ∈ E

In particular, there is an optimal solution x∗ that has integer entries only. As each component of
x∗ is between 0 and 1, we may select

M = {(u, v) ∈ E : x∗uv = 1} .

Note that ∑
v∈V2:(u,v)∈E

x∗uv = x∗su ≤ 1.

Therefore, u is connected to at most one edge in M . Similarly,∑
u∈V1:(u,v)∈E

x∗uv = x∗vt ≤ 1.
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Therefore, v is connected to at most one edge in M . This implies that M is a matching. In fact,
|M | is the size of the matching, and moreover,

|M | =
∑
u∈V1

x∗uv.

This implies that we have just solved bipartite matching by maximum st-flow.

2.2 Incidence-matrix-based formulation

Recall that the matching problem can be formulated as the following integer program.

max
∑
e∈E

wexe

s.t.
∑

e∈δ(v)

xe ≤ 1, ∀v ∈ V,

xe ∈ {0, 1}, ∀e ∈ E

where for v ∈ V , δ(v) = {e ∈ E : one end of e is v} . We may represent the integer program in
matrix form. Let A be the vertex-edge incidence matrix of G. Here, A is defined as

av,e =

{
1, if v is adjacent to e,

0, otherwise.

For example, consider the following small bipartite graph. The vertex-edge incidence matrix of this

Figure 14.3: Bipartite graph on 5 vertices

graph is given by Table 1. Note that this matrix is totally unimodular! The partition {a, b} and

1 2 3 4 5

a 1 1
b 1 1 1
c 1 1
d 1 1
e 1

Table 1: The vertex-edge incidence matrix of the bipartite graph on 5 vertices

{c, d, e} naturally give an equitable bicoloring. In general,
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Theorem 14.1. The vertex-edge incidence matrix of a bipartite graph is totally unimodular.

Furthermore, the integer programming formulation can be written as

max
∑
e∈E

wexe

s.t. Ax ≤ 1,

xe ∈ {0, 1}, ∀e ∈ E

where A is the incidence matrix of the bipartite graph G. As A is totally unimodular, solving its
LP relaxation computes a maximum weight bipartite matching.

3 Uncapacitated lot sizing problem

We have n periods and a single product. The following lists problem parameters, costs and demand.

• dt: demand in period t

• pt: unit production cost in period t

• it: unit inventory cost in period t

• ft: fixed set-up cost in period t

The following is the list of decision variables we use.

• xt: amount produced in period t

• st: inventory at the end of period t (s0 = 0)

• yt: variable to indicate production in period t, i.e.

yt =

{
1, if production occurs in period t

0, otherwise

Then, the following formulation describes the problem.

min
n∑

t=1

ptxt +
n∑

t=1

itst +
n∑

t=1

ftyt

s.t. st−1 + xt = dt + st, t ∈ [n]

xt ≤ Mtyt, t ∈ [n]

s, x ≥ 0

yt ∈ {0, 1}, t ∈ [n]

We may eliminate the production variables via

xt = dt + st − st−1.

Let
ht = it + pt − pt−1.
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Then we obtain

min
n∑

t=1

htst +
n∑

t=1

ftyt

s.t. dt + st − st−1 ≤ Mtyt, t ∈ [n]

s ≥ 0

yt ∈ {0, 1}, t ∈ [n]

(14.1)

Next we give another formulation. For j ≥ t, let

δtj =

{
1, if no production in periods t to j

0, otherwise

Consider the second formulation

min

n∑
t=1

htst +

n∑
t=1

ftyt

s.t. st−1 ≥
n∑

j=t

djδtj , t ∈ [n]

δtj ≥ 1−
j∑

i=t

yi, t ∈ [n]

δtj ≥ 0, t ∈ [n]

yt ∈ {0, 1}, t ∈ [n]

(14.2)

Assumption 1 (Wagner-Whitin cost assumption). : ht = it + pt − pt−1 ≥ 0 for all t ∈ [n].

As ht ≥ 0 for all t ∈ [n], we may use

st−1 ≥
n∑

j=t

djδtj

to eliminate st.

min
n∑

t=1

ht

n∑
j=t+1

djδ(t+1)j +
n∑

t=1

ftyt

s.t. δtj ≥ 1−
j∑

i=t

yi, t ∈ [n]

δtj ≥ 0, t ∈ [n]

yt ∈ {0, 1}, t ∈ [n]

(14.3)

Theorem 14.2. The constraint matrix of formulation (14.3) is totally unimodular.

Proof. Matrix with consecutive 1’s property in each row. Hence, the corresponding constraint
matrix is totally unimodular by Ghouila-Houri’s theorem (alternate Blue and Red columns).
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