1 Outline

In this lecture, we study

- bipartite matching,
- uncapacitated lot-sizing problem

2 Bipartite matching

A bipartite graph is a graph $G=(V, E)$ where

- the vertex set V is partitioned into two sets V_{1} and V_{2},
- each edge $e \in E$ crosses the partition, i.e. e has one end in V_{1} and the other end in V_{2}.

For example, Figure 14.1 shows a bipartite graph on 7 vertices where one set contains 3 and the other has 4. A matching is a set of edges without common vertices. In Figure 14.1, the set of

Figure 14.1: Bipartite graph and a matching
green edges gives rise to a matching.
Suppose that each edge $e \in E$ has a weight w_{e}. Given a set of edges F, the weight of F is defined as the sum of weights of the edges in F, given by,

$$
\sum_{e \in F} w_{e} .
$$

The matching problem is to find a matching that has the maximum weight.

2.1 Reduction to maximum st-flow for the unweighted case

We first consider the unweighted case, i.e., $w_{e}=1$ for $e \in E$. The approach for the unweighted case is to reduce bipartite matching to maximum st-flow. Given a bipartite graph $G=(V, E)$ with V partitioned into V_{1} and V_{2}, we run the following transformation procedure.

- Add a source node s and a sink node t.
- Add arcs from s to all vertices in $V_{1}:\left\{(s, u): u \in V_{1}\right\}$.
- Add arcs to t from all vertices in $V_{2}:\left\{(v, t): v \in V_{2}\right\}$.
- Direct every edge (u, v) where $u \in V_{1}$ and $v \in V_{2}$ so that (u, v) becomes an arc from u to v.
- Set the flow upper bound $c_{u v}$ of every arc (u, v) to 1 .

Figure 14.2: Reducing a bipartite graph to a flow newtwork
Then the following linear program computes a maximum st-flow over the above network.

$$
\begin{array}{ll}
\max & \sum_{u \in V_{1}} x_{s u} \\
\text { s.t. } & \sum_{v \in V_{2}:(u, v) \in E} x_{u v}-x_{s u}=0, \quad u \in V_{1} \\
& x_{v t}-\sum_{u \in V_{1}:(u, v) \in E} x_{u v}=0, \quad v \in V_{2} \\
& 0 \leq x_{s u}, x_{v t}, x_{u v} \leq 1, \quad(u, v) \in E
\end{array}
$$

In particular, there is an optimal solution x^{*} that has integer entries only. As each component of x^{*} is between 0 and 1 , we may select

$$
M=\left\{(u, v) \in E: x_{u v}^{*}=1\right\} .
$$

Note that

$$
\sum_{v \in V_{2}:(u, v) \in E} x_{u v}^{*}=x_{s u}^{*} \leq 1
$$

Therefore, u is connected to at most one edge in M. Similarly,

$$
\sum_{u \in V_{1}:(u, v) \in E} x_{u v}^{*}=x_{v t}^{*} \leq 1 .
$$

Therefore, v is connected to at most one edge in M. This implies that M is a matching. In fact, $|M|$ is the size of the matching, and moreover,

$$
|M|=\sum_{u \in V_{1}} x_{u v}^{*} .
$$

This implies that we have just solved bipartite matching by maximum st-flow.

2.2 Incidence-matrix-based formulation

Recall that the matching problem can be formulated as the following integer program.

$$
\begin{array}{ll}
\max & \sum_{e \in E} w_{e} x_{e} \\
\text { s.t. } & \sum_{e \in \delta(v)} x_{e} \leq 1, \quad \forall v \in V, \\
& x_{e} \in\{0,1\}, \quad \forall e \in E
\end{array}
$$

where for $v \in V, \delta(v)=\{e \in E$: one end of e is $v\}$. We may represent the integer program in matrix form. Let A be the vertex-edge incidence matrix of G. Here, A is defined as

$$
a_{v, e}= \begin{cases}1, & \text { if } v \text { is adjacent to } e, \\ 0, & \text { otherwise }\end{cases}
$$

For example, consider the following small bipartite graph. The vertex-edge incidence matrix of this

Figure 14.3: Bipartite graph on 5 vertices
graph is given by Table 1. Note that this matrix is totally unimodular! The partition $\{a, b\}$ and

	1	2	3	4	5
a	1	1			
b			1	1	1
c	1		1		
d		1		1	
e					1

Table 1: The vertex-edge incidence matrix of the bipartite graph on 5 vertices
$\{c, d, e\}$ naturally give an equitable bicoloring. In general,

Theorem 14.1. The vertex-edge incidence matrix of a bipartite graph is totally unimodular.

Furthermore, the integer programming formulation can be written as

$$
\begin{aligned}
\max & \sum_{e \in E} w_{e} x_{e} \\
\text { s.t. } & A x \leq 1, \\
& x_{e} \in\{0,1\}, \quad \forall e \in E
\end{aligned}
$$

where A is the incidence matrix of the bipartite graph G. As A is totally unimodular, solving its LP relaxation computes a maximum weight bipartite matching.

3 Uncapacitated lot sizing problem

We have n periods and a single product. The following lists problem parameters, costs and demand.

- d_{t} : demand in period t
- p_{t} : unit production cost in period t
- i_{t} : unit inventory cost in period t
- f_{t} : fixed set-up cost in period t

The following is the list of decision variables we use.

- x_{t} : amount produced in period t
- s_{t} : inventory at the end of period $t\left(s_{0}=0\right)$
- $y_{t}:$ variable to indicate production in period t, i.e.

$$
y_{t}= \begin{cases}1, & \text { if production occurs in period } t \\ 0, & \text { otherwise }\end{cases}
$$

Then, the following formulation describes the problem.

$$
\begin{array}{ll}
\min & \sum_{t=1}^{n} p_{t} x_{t}+\sum_{t=1}^{n} i_{t} s_{t}+\sum_{t=1}^{n} f_{t} y_{t} \\
\text { s.t. } & s_{t-1}+x_{t}=d_{t}+s_{t}, \quad t \in[n] \\
& x_{t} \leq M_{t} y_{t}, \quad t \in[n] \\
& s, x \geq 0 \\
& y_{t} \in\{0,1\}, \quad t \in[n]
\end{array}
$$

We may eliminate the production variables via

$$
x_{t}=d_{t}+s_{t}-s_{t-1}
$$

Let

$$
h_{t}=i_{t}+p_{t}-p_{t-1}
$$

Then we obtain

$$
\begin{array}{ll}
\min & \sum_{t=1}^{n} h_{t} s_{t}+\sum_{t=1}^{n} f_{t} y_{t} \\
\text { s.t. } & d_{t}+s_{t}-s_{t-1} \leq M_{t} y_{t}, \quad t \in[n] \tag{14.1}\\
& s \geq 0 \\
& y_{t} \in\{0,1\}, \quad t \in[n]
\end{array}
$$

Next we give another formulation. For $j \geq t$, let

$$
\delta_{t j}= \begin{cases}1, & \text { if no production in periods } t \text { to } j \\ 0, & \text { otherwise }\end{cases}
$$

Consider the second formulation

$$
\begin{array}{ll}
\min & \sum_{t=1}^{n} h_{t} s_{t}+\sum_{t=1}^{n} f_{t} y_{t} \\
\text { s.t. } & s_{t-1} \geq \sum_{j=t}^{n} d_{j} \delta_{t j}, \quad t \in[n] \tag{14.2}\\
& \delta_{t j} \geq 1-\sum_{i=t}^{j} y_{i}, \quad t \in[n] \\
& \delta_{t j} \geq 0, \quad t \in[n] \\
& y_{t} \in\{0,1\}, \quad t \in[n]
\end{array}
$$

Assumption 1 (Wagner-Whitin cost assumption). : $h_{t}=i_{t}+p_{t}-p_{t-1} \geq 0$ for all $t \in[n]$.
As $h_{t} \geq 0$ for all $t \in[n]$, we may use

$$
s_{t-1} \geq \sum_{j=t}^{n} d_{j} \delta_{t j}
$$

to eliminate s_{t}.

$$
\begin{array}{ll}
\min & \sum_{t=1}^{n} h_{t} \sum_{j=t+1}^{n} d_{j} \delta_{(t+1) j}+\sum_{t=1}^{n} f_{t} y_{t} \\
\text { s.t. } & \delta_{t j} \geq 1-\sum_{i=t}^{j} y_{i}, \quad t \in[n] \tag{14.3}\\
& \delta_{t j} \geq 0, \quad t \in[n] \\
& y_{t} \in\{0,1\}, \quad t \in[n]
\end{array}
$$

Theorem 14.2. The constraint matrix of formulation (14.3) is totally unimodular.
Proof. Matrix with consecutive 1's property in each row. Hence, the corresponding constraint matrix is totally unimodular by Ghouila-Houri's theorem (alternate Blue and Red columns).

