1 Outline

In this lecture, we study

- the shortest path problem,
- maximum $s t$-flow,
- minimum st-cut,
- the max-flow min-cut theorem,
- bipartite matching.

2 Shortest path problem

Given a directed graph $D=(N, A)$ and two distinct nodes $s, t \in N$, a (directed) st-path is a sequence of nodes $v_{0}, v_{1}, \ldots, v_{\ell}$ such that

- $v_{0}=s$ and $v_{\ell}=t$,
- v_{0}, \ldots, v_{ℓ} are distinct nodes,
- $\left(v_{i-1}, v_{i}\right) \in A$ for $i=1, \ldots, \ell$.

Here we often call s the origin node and t the destination node. We can define an $s t$-path with arcs. A directed $s t$-path can be defined as a sequence of $\operatorname{arcs} a_{1}, \ldots, a_{\ell}$ such that

- $a_{i}=\left(v_{i-1}, v_{i}\right)$ for $i=1, \ldots, \ell$ for some nodes v_{0}, \ldots, v_{ℓ},
- $v_{0}=s$ and $v_{\ell}=t$,
- v_{0}, \ldots, v_{ℓ} are distinct nodes.

In general, a (directed) path is an $s t$-path where s and t are the first and the last nodes in the path. Let $c_{u v}$ be the length of $\operatorname{arc}(u, v) \in A$. Then the length of a path P is

$$
\sum_{(u, v) \in P} c_{u v}
$$

where $(u, v) \in P$ means that $\operatorname{arc}(u, v)$ is on the path P. Now the problem is to find a shortest $s t$-path, that is, a directed st-path of the minimum length.
We will show that the problem of finding a shortest st-path can be posed as an instance of the minimum cost flow problem. Let $x_{u v} \in\{0,1\}$ denote the variable for $\operatorname{arc}(u, v)$ to indicate whether

Figure 13.1: st-path as a unit flow
$\operatorname{arc}(u, v) \in A$ is chosen to be part of my path. Then we may look at $x \in\{0,1\}^{A}$ whose components correspond to the arc set A. If x corresponds to the arc set of an $s t$-path, then

$$
\sum_{(u, v) \in A} c_{u v} x_{u v}
$$

would be the length of the path.
When does a 0,1 vector $x \in\{0,1\}^{A}$ correspond to an st-path? Observe the following.

- The origin node s has an outgoing arc on the path. No other arc of the path is incident to s. We may model this as

$$
\sum_{j \in N:(s, j) \in A} x_{s j}-\sum_{k \in N:(k, s) \in A} x_{k s}=1 .
$$

- The destination node t has an incoming arc on the path. No other arc of the path is incident to t. We may model this as

$$
\sum_{j \in N:(t, j) \in A} x_{t j}-\sum_{k \in N:(k, t) \in A} x_{k t}=-1 .
$$

- Let $i \in N \backslash\{s, t\}$. If i is on the path, then i has an incoming arc and an outgoing arc on the path. No other arc is incident to i. If i is not on the path, then no arc of the path is incident to i. This implies that the number of arcs going into i and the number of arcs going out of i are the same. This can modeled as

$$
\sum_{j \in N:(i, j) \in A} x_{i j}-\sum_{k \in N:(k, i) \in A} x_{k i}=0 .
$$

Therefore, an st-path can be viewed as the source node s sending one unit of flow to the sink node t. More precisely, the origin node s has supply 1 , and the destination node t has demand 1 . The other nodes have 0 net supply, meaning that they are transhipment nodes. Then the problem can
be formulated as

$$
\begin{array}{ll}
\min & \sum_{(u, v) \in A} c_{u v} x_{u v} \\
\text { s.t. } & \sum_{j \in N:(s, j) \in A} x_{s j}-\sum_{k \in N:(k, s) \in A} x_{k s}=1 \\
& \sum_{j \in N:(t, j) \in A} x_{t j}-\sum_{k \in N:(k, t) \in A} x_{k t}=-1 \\
& \sum_{j \in N:(i, j) \in A} x_{i j}-\sum_{k \in N:(k, i) \in A} x_{k i}=0, \quad \forall i \in N \backslash\{s, t\} \\
& x_{i j} \in \mathbb{Z}_{+}, \quad \forall(i, j) \in A
\end{array}
$$

The formulation is an instance of the minimum cost flow formulation. Therefore, solving this linear program will return a solution x^{*} that has integer entries only, which corresponds to a shortest st-path.
A directed cycle is a sequence of nodes $v_{0}, v_{1}, \ldots, v_{\ell}$ such that

- $v_{0}, \ldots, v_{\ell-1}$ are distinct nodes,
- $v_{\ell}=v_{0}$.

Remark 13.1. If D contains a directed cycle of negative length, then the linear program is unbounded. If D contains no directed cycle of negative length, then the linear program would have an optimal solution.

3 Maximum st-flow

The minimum cost flow model we learned does not have a designated source or a sink. In this section, we discuss a network flow model with a sink node and a source node. Let s and t be the source node and the sink node, respectively. The source node s sends flows, and the sink node receives the flows sent by the source. The other nodes are transhipment node, meaning that the othder nodes have 0 net supply. Each arc in the given network has an upper bound on the amount of flowws that it can take, i.e.

$$
0 \leq x_{i j} \leq c_{i j}, \quad(i, j) \in A
$$

Then the problem is to compute the maximum amount of flows that the source node s can send to the sink node t while obeying the flow capacities of arcs.

Figure 13.2: Sending flow from s to t

Although this problem seems different from the minimum cost flow problem, we may formulate the problem as a min cost flow model. The common trick is to add a dummy arc from the sink node t to the source node s. This dummy arc (t, s) sends back all the flows coming from s to t. Basically, we impose that

$$
x_{t s}=\underbrace{\sum_{k \in N:(k, t) \in A} x_{k t}-\sum_{j \in N:(t, j) \in A} x_{t j}}_{\text {the net amount of flows into } t}
$$

Moreover, $A^{\prime}=A \cup\{(t, s)\}$ is the arc set of the new network obtained after adding the dummy arc (t, s). Then

$$
\begin{aligned}
0 & =x_{t s}+\sum_{j \in N:(t, j) \in A} x_{t j}-\sum_{k \in N:(k, t) \in A} x_{k t} \\
& =\underbrace{\sum_{j \in N:(t, j) \in A^{\prime}} x_{t j}-\sum_{k \in N:(k, t) \in A^{\prime}} x_{k t}}_{\text {the net amount of flows into } t \text { in the new network }} .
\end{aligned}
$$

Furthermore, the amount of flows that the sink node t receives is equal to the amount of flows that the source node s sends out. Hence, we have

$$
\underbrace{\sum_{j \in N:(s, j) \in A} x_{s j}-\sum_{k \in N:(k, s) \in A} x_{k s}}_{\text {the net amount of flows out of } s}=\sum_{k \in N:(k, t) \in A} x_{k t}-\sum_{j \in N:(t, j) \in A} x_{t j}=x_{t s}
$$

Then it follows that

$$
\begin{aligned}
0 & =\sum_{j \in N:(s, j) \in A} x_{s j}-\sum_{k \in N:(k, s) \in A} x_{k s}-x_{t s} \\
& =\underbrace{}_{\text {the net amount of flows out of } s \text { in the new network }} \sum_{j \in N:(s, j) \in A^{\prime}} x_{s j}-\sum_{k \in N:(k, s) \in A^{\prime}} x_{k s}
\end{aligned} .
$$

The other nodes in the network are transhipment nodes and are not connected to the dummay arc (t, s), so we have

$$
\sum_{j \in N:(i, j) \in A^{\prime}} x_{i j}-\sum_{k \in N:(k, i) \in A^{\prime}} x_{k i}=0, \quad i \in N \backslash\{s, t\} .
$$

Then the problem can be formulated as

$$
\begin{array}{cl}
\max & x_{t s} \\
\text { s.t. } & \sum^{j \in N:(i, j) \in A \cup\{(t, s)\}} x_{i j}-\sum_{k \in N:(k, i) \in A \cup\{(t, s)\}} x_{k i}=0, \quad \forall i \in N \\
& 0 \leq x_{i j} \leq c_{i j}, \quad \forall(i, j) \in A .
\end{array}
$$

Observe that the dummy arc $x_{t s}$ is a free variable, which is equivalent to $-\infty \leq x_{t s} \leq+\infty$. As this formulation is an instance of the minimum cost flow model, it returns an integer flow as long as the capacities $c_{i j}$ for $(i, j) \in A$ are integers.

4 Minimum st-cut

A directed $s t$-cut is a set of arcs of the form

$$
\delta^{+}(S)=\{(u, v) \in A: u \in S, v \notin S\}
$$

where $S \subseteq N$ contains s but not t. In words, $\delta^{+}(S)$ is the set of arcs going out of the node set S. Given arc weights $c_{u v}$ for $(u, v) \in A$, the weight of an $s t$-cut $\delta^{+}(S)$ is given by

$$
\sum_{(u, v) \in \delta^{+}(S)} c_{u v} .
$$

Then the minimum st-cut problem is to find an st-cut whose weight sum is minimized.
We may formulate the minimum st-cut problem as an integer program.

- For nodes s and t, we assign integer variables $y_{s}, y_{t} \in \mathbb{Z}_{+}$that satisfy

$$
y_{s}=0 \quad \text { and } \quad y_{t}=1 .
$$

Then y_{s} and y_{t} satisfy

$$
y_{t}-y_{s}=1 .
$$

- For $i \in N \backslash\{s, t\}$, we assign an integer variable $y_{i} \in \mathbb{Z}_{+}$. We set

$$
y_{i}=\left\{\begin{array}{ll}
0, & \text { if } i \in S \\
1, & \text { if } i \notin S
\end{array} .\right.
$$

- For each arc $(i, j) \in A$, we assign variable $z_{i j}$ to indicate whether arc (i, j) is part of the $s t$-cut. We can model this by adding

$$
z_{i j} \geq y_{j}-y_{i}
$$

Here, if $y_{j}=1$ and $y_{i}=0$, then $i \in S$ and $j \notin S$, which implies that (i, j) is part of $\delta^{+}(S)$.
Then we deduce

$$
\begin{array}{ll}
\min & \sum_{(i, j) \in A} c_{i j} z_{i j} \\
\text { s.t. } & z_{i j} \geq y_{j}-y_{i}, \quad(i, j) \in A \\
& y_{t}-y_{s}=1 \\
& z_{i j} \in \mathbb{Z}_{+}, \quad(i, j) \in A .
\end{array}
$$

Although $z_{i j}$ can take an arbitrary nonnegative integer, if the arc lengths $c_{i j}$ for $(i, j) \in A$ are all nonnegative, then an optimal solution would have $z_{i j} \in\{0,1\}$ for $(i, j) \in A$.

5 The max-flow min-cut theorem

Let us rewrite the LP relaxation of the integer program for solving the minimum st-cut problem.

$$
\begin{array}{ll}
\min & \sum_{(i, j) \in A} c_{i j} z_{i j} \\
\text { s.t. } & y_{i}-y_{j}+z_{i j} \geq 0, \quad(i, j) \in A \\
& y_{t}-y_{s}=1 \\
& z_{i j} \geq 0, \quad(i, j) \in A .
\end{array}
$$

In fact, the dual of this linear program is precisely

$$
\begin{array}{cl}
\max & x_{t s} \\
\text { s.t. } & \sum_{j \in N:(i, j) \in A \cup\{(t, s)\}} x_{i j}-\sum_{k \in N:(k, i) \in A \cup\{(t, s)\}} x_{k i}=0, \quad \forall i \in N \\
& 0 \leq x_{i j} \leq c_{i j}, \quad \forall(i, j) \in A,
\end{array}
$$

which is the linear program for solving the maximum st-flow problem. Based on the duality relationship, we may observe the following.

1. The constraint matrix for the maximum st-flow formulation is totally unimodular. Then the transpose of it is the constraint matrix for the mimum st-cut formulation. This implies that the LP relaxation of the minimum st-cut formulation has an optimal solution that has integer entries only, which corresponds to a minimum st-cut.
2. The primal optimum is the minimum weight of an st-cut, and the dual optimum is the maximum amount of an $s t$-flow. By strong LP duality, the two values are equal.

Theorem 13.2 (The max-flow min-cut theorem). Let $D=(N, A)$ be a directed graph with arc weights $c_{i j} \in \mathbb{R}_{+}$for $(i, j) \in A$, and let $s, t \in N$ be two distinct nodes. Then the maximum amount of an st-flow is equal to the minimum weight of an st-cut.

