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1 Outline

In this lecture, we study

e the shortest path problem,

e maximum st-flow,

e minimum st-cut,

e the max-flow min-cut theorem,

e bipartite matching.

2 Shortest path problem

Given a directed graph D = (N, A) and two distinct nodes s,t € N, a (directed) st-path is a
sequence of nodes vy, v1, ..., vy such that

e vy =s and vy =1,
® 7,...,vp are distinct nodes,

° (Ui,l,vi) c Afori= 1,...,€.

Here we often call s the origin node and ¢ the destination node. We can define an st-path with
arcs. A directed st-path can be defined as a sequence of arcs aq, ..., ag such that

e a; = (vj_1,v;) for i =1,...,¢ for some nodes vy, ..., vy,
e vy =s and vy =1,

® 7,...,vp are distinct nodes.

In general, a (directed) path is an st-path where s and ¢ are the first and the last nodes in the
path. Let ¢y, be the length of arc (u,v) € A. Then the length of a path P is

where (u,v) € P means that arc (u,v) is on the path P. Now the problem is to find a shortest
st-path, that is, a directed st-path of the minimum length.

We will show that the problem of finding a shortest st-path can be posed as an instance of the
minimum cost flow problem. Let ., € {0, 1} denote the variable for arc (u, v) to indicate whether



Figure 13.1: st-path as a unit flow

arc (u,v) € A is chosen to be part of my path. Then we may look at = € {0, l}A whose components
correspond to the arc set A. If x corresponds to the arc set of an st-path, then

E C’LL’U xuv

(u,w)eA

would be the length of the path.
When does a 0,1 vector = € {0, l}A correspond to an st-path? Observe the following.

e The origin node s has an outgoing arc on the path. No other arc of the path is incident to s.

We may model this as
S nie Y et
JEN:(s,j)EA keEN:(k,s)€A

e The destination node ¢ has an incoming arc on the path. No other arc of the path is incident
to t. We may model this as

Z Tij — Z Tre = —1.

JEN:(t,j)EA keN:(k,t)eA

e Let : € N\ {s,t}. If i is on the path, then 7 has an incoming arc and an outgoing arc on the
path. No other arc is incident to ¢. If ¢ is not on the path, then no arc of the path is incident
to 4. This implies that the number of arcs going into ¢ and the number of arcs going out of ¢
are the same. This can modeled as

Z LTij — Z Ty = 0.

JEN:(i,7)EA keEN:(k,i)€eA

Therefore, an st-path can be viewed as the source node s sending one unit of flow to the sink node
t. More precisely, the origin node s has supply 1, and the destination node ¢ has demand 1. The
other nodes have 0 net supply, meaning that they are transhipment nodes. Then the problem can



be formulated as

min g CuvTuw

(u,v)EA
s.t. Z Tsj — Z Tps = 1
JEN:(s,j)EA keN:(k,s)€A
D
JEN:(t,j)€A kEN:(k,t)eA
Z Tij — Z =0, YieN \ {S,t}
JEN:(i,5)€A keEN:(kyi)eA

Tij € Ly, V(Z7]) €A

The formulation is an instance of the minimum cost flow formulation. Therefore, solving this linear
program will return a solution x* that has integer entries only, which corresponds to a shortest
st-path.

A directed cycle is a sequence of nodes vy, v1, ..., vg such that
® vg,...,vs_1 are distinct nodes,
e vy = 1.

Remark 13.1. If D contains a directed cycle of negative length, then the linear program is un-
bounded. If D contains no directed cycle of negative length, then the linear program would have
an optimal solution.

3 Maximum st-flow

The minimum cost flow model we learned does not have a designated source or a sink. In this
section, we discuss a network flow model with a sink node and a source node. Let s and ¢ be
the source node and the sink node, respectively. The source node s sends flows, and the sink node
receives the flows sent by the source. The other nodes are transhipment node, meaning that the
othder nodes have 0 net supply. Each arc in the given network has an upper bound on the amount
of flowws that it can take, i.e.

OSCCZ']' SCZ‘j, (’L,])EA

Then the problem is to compute the maximum amount of flows that the source node s can send to
the sink node ¢ while obeying the flow capacities of arcs.
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Figure 13.2: Sending flow from s to ¢
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Although this problem seems different from the minimum cost flow problem, we may formulate the
problem as a min cost flow model. The common trick is to add a dummy arc from the sink node ¢
to the source node s. This dummy arc (¢, s) sends back all the flows coming from s to ¢. Basically,

we impose that
Tts = Z Tt — Z Ttj -
keN:(kt)eA JEN:(t,5)EA

~
the net amount of flows into ¢

Moreover, A" = AU{(t, s)} is the arc set of the new network obtained after adding the dummy arc
(t,s). Then

0=z + Z Ttj — Z Tt

JEN:(t,j)eA keN:(kt)cA
= DR D DR
JEN:(t,5)€A! kEN:(k,t)cA’

~
the net amount of flows into ¢ in the new network

Furthermore, the amount of flows that the sink node t receives is equal to the amount of flows that
the source node s sends out. Hence, we have

2. wi— DL ww= ), aw- ), wmj=w

JEN:(s,j)EA keEN:(k,s)€A kEN:(kt)eA JEN:(t,5)€A

the net amount of flows out of s

Then it follows that

0= Z Tsj — Z LTks — Tts

JEN:(s,5)€A kEN:(k,s)€A
= Z Tsj — 5 Tks
JEN:(s,j)EA’ keN:(k,s)cA’

~
the net amount of flows out of s in the new network

The other nodes in the network are transhipment nodes and are not connected to the dummay arc

(t,s), so we have
Z Tij — Z T =0, 1€ N\ {st}.

JEN:(3,5)€A’ keEN:(k,i)cA’

Then the problem can be formulated as

max Tis
s.t. Z Tij — Z =0, VieN
JEN:(i,j)EAU{(t,5)} kEN:(k,i)€AU{(t,5)}
0<uay <cj, V(ij) €A
Observe that the dummy arc x4 is a free variable, which is equivalent to —oo < x5 < 400. As

this formulation is an instance of the minimum cost flow model, it returns an integer flow as long
as the capacities ¢;; for (4,j) € A are integers.



4 Minimum st-cut
A directed st-cut is a set of arcs of the form
§T(S) ={(u,v) €A: uesS vgS}

where S C N contains s but not ¢. In words, 67(5) is the set of arcs going out of the node set S.
Given arc weights c,, for (u,v) € A, the weight of an st-cut 67 (9) is given by

E Cyv-

(u,0)€81(S)

Then the minimum st-cut problem is to find an st-cut whose weight sum is minimized.

We may formulate the minimum st-cut problem as an integer program.

e For nodes s and t, we assign integer variables ys, ys € Z that satisfy
ys =0 and gy =1.

Then ys and y; satisfy
Y —Ys = 1.

e Fori e N\ {s,t}, we assign an integer variable y; € Z,. We set

~Jo, ifies,
YT itig s

e For each arc (i,j) € A, we assign variable z;; to indicate whether arc (i,7) is part of the
st-cut. We can model this by adding

Zij 2 Yj — Yi-
Here, if y; =1 and y; = 0, then i € S and j ¢ S, which implies that (¢, 7) is part of §7(S5).

Then we deduce

min E Cij Zij

(i,5)eA
s.t. zij 2 Y5 — Yis (iv.j) €A
yr —ys =1

zij € Ly, (i,7) € A.

Although z;; can take an arbitrary nonnegative integer, if the arc lengths ¢;; for (i,j) € A are all
nonnegative, then an optimal solution would have z;; € {0,1} for (4, 5) € A.



5 The max-flow min-cut theorem

Let us rewrite the LP relaxation of the integer program for solving the minimum st-cut problem.

min E CijZij

(i.7)eA
st yi—yj+z; >0, (i,5) €A
U —Ys = 1

zij 20, (i) € A.
In fact, the dual of this linear program is precisely

max Tt

s.t. Z Tij — Z rp; =0, VieN

JEN:(i,5)€AU{(t,s)} keN:(ki)cAU{(t,s)}
0< Tij < ¢y, V(Z,j) € A,

which is the linear program for solving the maximum st-flow problem. Based on the duality
relationship, we may observe the following.

1. The constraint matrix for the maximum st-flow formulation is totally unimodular. Then the
transpose of it is the constraint matrix for the mimum st-cut formulation. This implies that
the LP relaxation of the minimum st-cut formulation has an optimal solution that has integer
entries only, which corresponds to a minimum st-cut.

2. The primal optimum is the minimum weight of an st-cut, and the dual optimum is the
maximum amount of an st-flow. By strong LP duality, the two values are equal.

Theorem 13.2 (The max-flow min-cut theorem). Let D = (N, A) be a directed graph with arc
weights c;; € Ry for (i,j) € A, and let s,t € N be two distinct nodes. Then the mazimum amount
of an st-flow is equal to the minimum weight of an st-cut.
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