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1 Outline

In this lecture, we study

• the shortest path problem,

• maximum st-flow,

• minimum st-cut,

• the max-flow min-cut theorem,

• bipartite matching.

2 Shortest path problem

Given a directed graph D = (N,A) and two distinct nodes s, t ∈ N , a (directed) st-path is a
sequence of nodes v0, v1, . . . , vℓ such that

• v0 = s and vℓ = t,

• v0, . . . , vℓ are distinct nodes,

• (vi−1, vi) ∈ A for i = 1, . . . , ℓ.

Here we often call s the origin node and t the destination node. We can define an st-path with
arcs. A directed st-path can be defined as a sequence of arcs a1, . . . , aℓ such that

• ai = (vi−1, vi) for i = 1, . . . , ℓ for some nodes v0, . . . , vℓ,

• v0 = s and vℓ = t,

• v0, . . . , vℓ are distinct nodes.

In general, a (directed) path is an st-path where s and t are the first and the last nodes in the
path. Let cuv be the length of arc (u, v) ∈ A. Then the length of a path P is∑

(u,v)∈P

cuv

where (u, v) ∈ P means that arc (u, v) is on the path P . Now the problem is to find a shortest
st-path, that is, a directed st-path of the minimum length.

We will show that the problem of finding a shortest st-path can be posed as an instance of the
minimum cost flow problem. Let xuv ∈ {0, 1} denote the variable for arc (u, v) to indicate whether
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Figure 13.1: st-path as a unit flow

arc (u, v) ∈ A is chosen to be part of my path. Then we may look at x ∈ {0, 1}A whose components
correspond to the arc set A. If x corresponds to the arc set of an st-path, then∑

(u,v)∈A

cuvxuv

would be the length of the path.

When does a 0,1 vector x ∈ {0, 1}A correspond to an st-path? Observe the following.

• The origin node s has an outgoing arc on the path. No other arc of the path is incident to s.
We may model this as ∑

j∈N :(s,j)∈A

xsj −
∑

k∈N :(k,s)∈A

xks = 1.

• The destination node t has an incoming arc on the path. No other arc of the path is incident
to t. We may model this as ∑

j∈N :(t,j)∈A

xtj −
∑

k∈N :(k,t)∈A

xkt = −1.

• Let i ∈ N \ {s, t}. If i is on the path, then i has an incoming arc and an outgoing arc on the
path. No other arc is incident to i. If i is not on the path, then no arc of the path is incident
to i. This implies that the number of arcs going into i and the number of arcs going out of i
are the same. This can modeled as∑

j∈N :(i,j)∈A

xij −
∑

k∈N :(k,i)∈A

xki = 0.

Therefore, an st-path can be viewed as the source node s sending one unit of flow to the sink node
t. More precisely, the origin node s has supply 1, and the destination node t has demand 1. The
other nodes have 0 net supply, meaning that they are transhipment nodes. Then the problem can
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be formulated as

min
∑

(u,v)∈A

cuvxuv

s.t.
∑

j∈N :(s,j)∈A

xsj −
∑

k∈N :(k,s)∈A

xks = 1

∑
j∈N :(t,j)∈A

xtj −
∑

k∈N :(k,t)∈A

xkt = −1

∑
j∈N :(i,j)∈A

xij −
∑

k∈N :(k,i)∈A

xki = 0, ∀i ∈ N \ {s, t}

xij ∈ Z+, ∀(i, j) ∈ A

The formulation is an instance of the minimum cost flow formulation. Therefore, solving this linear
program will return a solution x∗ that has integer entries only, which corresponds to a shortest
st-path.

A directed cycle is a sequence of nodes v0, v1, . . . , vℓ such that

• v0, . . . , vℓ−1 are distinct nodes,

• vℓ = v0.

Remark 13.1. If D contains a directed cycle of negative length, then the linear program is un-
bounded. If D contains no directed cycle of negative length, then the linear program would have
an optimal solution.

3 Maximum st-flow

The minimum cost flow model we learned does not have a designated source or a sink. In this
section, we discuss a network flow model with a sink node and a source node. Let s and t be
the source node and the sink node, respectively. The source node s sends flows, and the sink node
receives the flows sent by the source. The other nodes are transhipment node, meaning that the
othder nodes have 0 net supply. Each arc in the given network has an upper bound on the amount
of flowws that it can take, i.e.

0 ≤ xij ≤ cij , (i, j) ∈ A.

Then the problem is to compute the maximum amount of flows that the source node s can send to
the sink node t while obeying the flow capacities of arcs.

Figure 13.2: Sending flow from s to t
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Although this problem seems different from the minimum cost flow problem, we may formulate the
problem as a min cost flow model. The common trick is to add a dummy arc from the sink node t
to the source node s. This dummy arc (t, s) sends back all the flows coming from s to t. Basically,
we impose that

xts =
∑

k∈N :(k,t)∈A

xkt −
∑

j∈N :(t,j)∈A

xtj︸ ︷︷ ︸
the net amount of flows into t

.

Moreover, A′ = A∪{(t, s)} is the arc set of the new network obtained after adding the dummy arc
(t, s). Then

0 = xts +
∑

j∈N :(t,j)∈A

xtj −
∑

k∈N :(k,t)∈A

xkt

=
∑

j∈N :(t,j)∈A′

xtj −
∑

k∈N :(k,t)∈A′

xkt︸ ︷︷ ︸
the net amount of flows into t in the new network

.

Furthermore, the amount of flows that the sink node t receives is equal to the amount of flows that
the source node s sends out. Hence, we have∑

j∈N :(s,j)∈A

xsj −
∑

k∈N :(k,s)∈A

xks︸ ︷︷ ︸
the net amount of flows out of s

=
∑

k∈N :(k,t)∈A

xkt −
∑

j∈N :(t,j)∈A

xtj = xts

Then it follows that

0 =
∑

j∈N :(s,j)∈A

xsj −
∑

k∈N :(k,s)∈A

xks − xts

=
∑

j∈N :(s,j)∈A′

xsj −
∑

k∈N :(k,s)∈A′

xks︸ ︷︷ ︸
the net amount of flows out of s in the new network

.

The other nodes in the network are transhipment nodes and are not connected to the dummay arc
(t, s), so we have ∑

j∈N :(i,j)∈A′

xij −
∑

k∈N :(k,i)∈A′

xki = 0, i ∈ N \ {s, t}.

Then the problem can be formulated as

max xts

s.t.
∑

j∈N :(i,j)∈A∪{(t,s)}

xij −
∑

k∈N :(k,i)∈A∪{(t,s)}

xki = 0, ∀i ∈ N

0 ≤ xij ≤ cij , ∀(i, j) ∈ A.

Observe that the dummy arc xts is a free variable, which is equivalent to −∞ ≤ xts ≤ +∞. As
this formulation is an instance of the minimum cost flow model, it returns an integer flow as long
as the capacities cij for (i, j) ∈ A are integers.
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4 Minimum st-cut

A directed st-cut is a set of arcs of the form

δ+(S) = {(u, v) ∈ A : u ∈ S, v ̸∈ S}

where S ⊆ N contains s but not t. In words, δ+(S) is the set of arcs going out of the node set S.
Given arc weights cuv for (u, v) ∈ A, the weight of an st-cut δ+(S) is given by∑

(u,v)∈δ+(S)

cuv.

Then the minimum st-cut problem is to find an st-cut whose weight sum is minimized.

We may formulate the minimum st-cut problem as an integer program.

• For nodes s and t, we assign integer variables ys, yt ∈ Z+ that satisfy

ys = 0 and yt = 1.

Then ys and yt satisfy
yt − ys = 1.

• For i ∈ N \ {s, t}, we assign an integer variable yi ∈ Z+. We set

yi =

{
0, if i ∈ S,

1, if i /∈ S.
.

• For each arc (i, j) ∈ A, we assign variable zij to indicate whether arc (i, j) is part of the
st-cut. We can model this by adding

zij ≥ yj − yi.

Here, if yj = 1 and yi = 0, then i ∈ S and j /∈ S, which implies that (i, j) is part of δ+(S).

Then we deduce

min
∑

(i,j)∈A

cijzij

s.t. zij ≥ yj − yi, (i, j) ∈ A

yt − ys = 1

zij ∈ Z+, (i, j) ∈ A.

Although zij can take an arbitrary nonnegative integer, if the arc lengths cij for (i, j) ∈ A are all
nonnegative, then an optimal solution would have zij ∈ {0, 1} for (i, j) ∈ A.
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5 The max-flow min-cut theorem

Let us rewrite the LP relaxation of the integer program for solving the minimum st-cut problem.

min
∑

(i,j)∈A

cijzij

s.t. yi − yj + zij ≥ 0, (i, j) ∈ A

yt − ys = 1

zij ≥ 0, (i, j) ∈ A.

In fact, the dual of this linear program is precisely

max xts

s.t.
∑

j∈N :(i,j)∈A∪{(t,s)}

xij −
∑

k∈N :(k,i)∈A∪{(t,s)}

xki = 0, ∀i ∈ N

0 ≤ xij ≤ cij , ∀(i, j) ∈ A,

which is the linear program for solving the maximum st-flow problem. Based on the duality
relationship, we may observe the following.

1. The constraint matrix for the maximum st-flow formulation is totally unimodular. Then the
transpose of it is the constraint matrix for the mimum st-cut formulation. This implies that
the LP relaxation of the minimum st-cut formulation has an optimal solution that has integer
entries only, which corresponds to a minimum st-cut.

2. The primal optimum is the minimum weight of an st-cut, and the dual optimum is the
maximum amount of an st-flow. By strong LP duality, the two values are equal.

Theorem 13.2 (The max-flow min-cut theorem). Let D = (N,A) be a directed graph with arc
weights cij ∈ R+ for (i, j) ∈ A, and let s, t ∈ N be two distinct nodes. Then the maximum amount
of an st-flow is equal to the minimum weight of an st-cut.
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