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1 Outline

In this lecture, we study

• the minimum cost flow problem,

• totally unimodular matrices.

2 Minimum cost flow problem

A directed graph D = (N,A) consists of a set of nodes N and a set of arcs A ⊆ N × N . A
directed graph is often referred to as a network. Here, an arc is an ordered pair of two nodes.
Figure 12.1 shows a network over 6 nodes with 9 arcs in total. The node set N and the arc set A

Figure 12.1: Network over 6 nodes

are given by

N = {1, 2, 3, 4, 5, 6} and A = {(1, 3), (2, 1), (2, 4), (3, 2), (3, 5), (4, 3), (4, 6), (5, 6), (6, 4)}.

One of the most general network flow models is the minimum cost flow model. Here, think of
flow as some quantity, such as water, electricity, money, and products, that needs to be routed
around the network. Given a directed graph D = (N,A), we define the following components of
the problem.

Decisions: We use variable xij for each arc (i, j) ∈ A to decide how much flow travels across
arc (i, j). To encode discrete quantities, such as the number of products sent from one city to
another, we impose that

xij ∈ Z, ∀(i, j) ∈ A.

Flow bound constraints: There are upper and lower bounds on how much flow an arc can
accommodate. For each arc (i, j) ∈ A,

ℓij ≤ xij ≤ uij
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for some ℓij , uij ≥ 0. Here, uij can take +∞, in which case we simply write xij ≥ ℓij without the
upper bound. ℓij is often set to 0. By defining vectors ℓ and u that collect the lower and upper
bounds of arc flows, we can summarize the constraints as

ℓ ≤ x ≤ u.

Flow balance constraints: For each node i ∈ N and the vector x of flow values on the arcs,
the outflow is defined as the amount of flow out of the node i:

outflow(i;x) :=
∑

j∈N :(i,j)∈A

xij .

The inflow is defined as the amount of flow into the node i:

inflow(i;x) :=
∑

k∈N :(k,i)∈A

xki.

The net supply of node i is the difference of the outflow and the inflow:

net-supply(i;x) = outflow(i;x)− inflow(i;x) =
∑

j∈N :(i,j)∈A

xij −
∑

k∈N :(k,i)∈A

xki.

Each node i satisfies a flow balance constraint, given by

net-supply(i;x) =
∑

j∈N :(i,j)∈A

xij −
∑

k∈N :(k,i)∈A

xki = bi.

Here, each node i is either a supply or a demand node, given by a parameter bi.

• If bi > 0, i.e., the net supply is positive, then i is a supply node.

• If bi < 0, i.e., the net supply is negative, then i is a demand node.

• If bi = 0, i.e., the net supply is zero, then i is a transhipment node.

Objective: Directing one unit of flow from node i to node j incurs a cost of cij . Then the
objective is to minimize the total cost.

minimize
∑

(i,j)∈A

cijxij .

To summarize, the minimum cost flow problem over networkD = (N,A) is modeled as the following
integer linear program.

min
∑

(i,j)∈A

cijxij

s.t.
∑

j∈N :(i,j)∈A

xij −
∑

k∈N :(k,i)∈A

xki = bi, i ∈ N

ℓ ≤ x ≤ u

xij ∈ Z, (i, j) ∈ A.
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Given a directed graph D = (N,A), the node-arc incidence matrix M has |N | rows correspond-
ing to the nodes and |A| columns corresponding to the arcs. The entries of M is given by

mi,(k,j) =


1, if k = i,

−1, if j = i,

0, if k ̸= i and j ̸= i

for any i ∈ N and (k, j) ∈ A. We often refer to M as a network matrix. For example, the
directed graph over 6 nodes has the incidence matrix given as the following table.

mi,(k,j) (1, 3) (2, 1) (2, 4) (3, 2) (3, 5) (4, 3) (4, 6) (5, 6) (6, 4)

1 1 −1
2 1 1 −1
3 −1 1 1 −1
4 −1 1 1 −1
5 −1 1
6 −1 −1 1

The incidence matrix has the following properties.

• Entries are −1, 0, and +1 only.

• Each column has only two nonzero entries, +1 and −1.

• The column for arc (k, j) has +1 in row k and −1 in row j.

• Adding up all rows of M , we obtain a row of all zeros, i.e., 1⊤Mx = 0.

• Adding up any subset of rows of M , we obtain a vector with entries −1, 0, 1 only.

Let b be the vector with entries bi for i ∈ N . Then we may write the flow balance constraints as

Mx = b.

The ith row of this matrix equation is ∑
(k,j)∈A

mi,(k,j)xkj = bi.

Here, the left-hand side is given by∑
(k,j)∈A

mi,(k,j)xkj =
∑

(k,j)∈A:k=i

mi,(k,j)xkj +
∑

(k,j)∈A:j=i

mi,(k,j)xkj

=
∑

(k,j)∈A:k=i

xkj −
∑

(k,j)∈A:j=i

xkj

=
∑

j∈N :(i,j)∈A

xij −
∑

k∈N :(k,i)∈A

xki.

Therefore, Mx = b indeed collects the set of flow balance constraints.
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Remark 12.1. If Mx = b is feasible, then

0 = 1⊤Mx = 1⊤b =
∑
i∈N

bi.

Therefore, if
∑

i∈N bi ̸= 0, then Mx = b is infeasible.

With the incidence matrix, the minimum cost flow model can be written as

min
∑

(i,j)∈A

cijxij

s.t. Mx = b

ℓ ≤ x ≤ u

xij ∈ Z, (i, j) ∈ A.

Theorem 12.2. Let M be the node-arc incidence matrix of a network. Consider the LP relaxation

min
∑

(i,j)∈A

cijxij

s.t. Mx = b

ℓ ≤ x ≤ u

Suppose that b, ℓ, u have only integer entries. Then there exists an optimal solution x∗ to the LP
relaxation that has only integer entries.

3 Totally unimodular matrices

Let M be an m × d matrix. A submatrix of M is a matrix that consists of the entries in
a subset of rows and a subset of columns. For example, we take nodes {2, 4, 6} and columns
{(2, 4), (4, 6), (6, 4)}.

mi,(k,j) (1, 3) (2, 1) (2, 4) (3, 2) (3, 5) (4, 3) (4, 6) (5, 6) (6, 4)

1 1 −1
2 1 1 −1
3 −1 1 1 −1
4 −1 1 1 −1
5 −1 1
6 −1 −1 1

Then the corresponding submatrix of the node-arc incidence matrix is given by

(2, 4) (4, 6) (6, 4)

2 1 0 0
4 −1 1 −1
6 0 −1 1

A square submatrix of M is a submatrix of M that is a square matrix, i.e., the number of rows
and that of columns are equal.

A matrix M is totally unimodular if every square submatrix of M has determinant −1, 0, 1 only.
Note that each entry itself is an 1×1 square submatrix, so if M is totally unimodular, all its entries
are −1, 0, 1 only.
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Theorem 12.3 (Hoffman and Kruskal [HK56]). Consider a linear program given by

min c⊤x

s.t. Px ≤ b.

If P is totally unimodular and b has integer entries only, then there exists an optimal solution x∗

to the linear program that has only integer entries.

Theorem 12.4. Let M be the node-incidence matrix of a network, and let I be the identity matrix
that has the same number of columns as M . Then

M
−M
I
−I


is totally unimodular.

Note that by definition, if a matrix is totally unimodular, then all its submatrices are totally
unimodular. In particular, the node-arc incidence matrix M itself is totally unimodular.

We now prove Theorem 12.2.

Proof of Theorem 12.2. The LP relaxation of the minimum cost flow model is given by

min
∑

(i,j)∈A

cijxij

s.t. Mx = b,

ℓ ≤ x ≤ u.

We may write the constraints as

Mx ≤ b

−Mx ≤ −b

x ≤ u

−x ≤ −ℓ

Then the constraints can be taken into the following matrix inequality form.
M
−M
I
−I

x ≤


b
−b
u
−ℓ

 .

By Theorem 12.4, the resulting constraint matrix is totally unimodular. As b,−b, u,−ℓ have all
integer entries, it follows from Theorem 12.3 that there is an optimal solution x∗ that has integer
entries only.

How do we prove Theorem 12.4 and that a network matrix is totally unimodular? An equitable
column bicoloring of a matrix M is partition of its columns into two sets, say red and blue
columns, such that the sum of the red columns minus the sum of the blue columns is a vector of
entries −1, 0, 1 only. An equitable row bicoloring can be similarly defined.
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Theorem 12.5 (Ghouila-Houri [GH62]). A matrix M is totally unimodular if and only if every
column submatrix of M admits an equitable bicoloring.

Here, a column submatrix is a submatrix that keeps all rows. Note that M is totally unimodular
if and only if its transpose M⊤ is totally unimodular.

Theorem 12.6. Any network matrix M is totally unimodular.

Proof. Since M is totally unimodular if and only if M⊤ is totally unimodular, we may apply
Thoerem 12.5 to MT . Then, it follows that M is totally unimodular if and only if every row
submatrix of M admits an equitable row bicoloring. Note that every column of M has at most
one +1 and at most one −1. Then for any row submatrix M ′ of M , we assign only the red color
to the rows. Note that adding up all rows of M ′, which corresponds to a subset of rows of M , we
obtain a vector of entries −1, 0, 1 only. This means that coloring all rows of M ′ red gives rise to an
equitable row bicoloring.
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